23,177 research outputs found

    Phosphonium chloride for thermal storage

    Get PDF
    Development of systems for storage of thermal energy is discussed. Application of phosphonium chloride for heat storage through reversible dissociation is described. Chemical, physical, and thermodynamic properties of phosphonium chloride are analyzed and dangers in using phosphonium chloride are explained

    Regenerable metallic oxide systems for removal of carbon dioxide: A concept

    Get PDF
    Design concepts for portable canisters for removal of carbon dioxide are described. One is screen pack configuration consisting of brazed rectangular canister with four metal oxide packs inserted. Other is radial flow canister with perforated central tube. Methods of production and operating principles are presented

    The Feynman-Wilson gas and the Lund model

    Get PDF
    We derive a partition function for the Lund fragmentation model and compare it with that of a classical gas. For a fixed rapidity ``volume'' this partition function corresponds to a multiplicity distribution which is very close to a binomial distribution. We compare our results with the multiplicity distributions obtained from the JETSET Monte Carlo for several scenarios. Firstly, for the fragmentation vertices of the Lund string. Secondly, for the final state particles both with and without decays.Comment: Latex, 21+1 pages, 11 figure

    Advanced extravehicular protective system Interim report, 1 Jul. 1970 - 31 May 1971

    Get PDF
    Regenerable portable life support systems concepts for EVA use in 1980 and technology assessmen

    Solid amine compounds as sorbents for carbon dioxide: A concept

    Get PDF
    Solid amine compounds were examined as possible absorbents for removal of carbon dioxide in life support systems of type which may be employed in high altitude aircraft, spacecraft, or submarines. Many solid amine compounds release absorbed carbon dioxide when heated in vacuum, therefore, when properly packaged spent amine compounds can be readily regenerated and put back into service

    An FPGA Implementation of Kak's Instantaneously-Trained, Fast-Classification Neural Networks

    Get PDF
    Motivated by a biologically plausible short-memory sketchpad, Kak's Fast Classification (FC) neural networks are instantaneously trained by using a prescriptive training scheme. Both weights and the topology for an FC network are specified with only two presentations of the training samples. Compared with iterative learning algorithms such as Backpropagation (which may require many thousands of presentations of the training data), the training of FC networks is extremely fast and learning convergence is always guaranteed. Thus FC networks are suitable for applications where real-time classification and adaptive filtering are needed. In this paper we show that FC networks are "hardware friendly" for implementation on FPGAs. Their unique prescriptive learning scheme can be integrated with the hardware design of the FC network through parameterization and compile-time constant folding

    Synthesizing Program Input Grammars

    Full text link
    We present an algorithm for synthesizing a context-free grammar encoding the language of valid program inputs from a set of input examples and blackbox access to the program. Our algorithm addresses shortcomings of existing grammar inference algorithms, which both severely overgeneralize and are prohibitively slow. Our implementation, GLADE, leverages the grammar synthesized by our algorithm to fuzz test programs with structured inputs. We show that GLADE substantially increases the incremental coverage on valid inputs compared to two baseline fuzzers

    Size-scaling limits of impulsive elastic energy release from a resilin-like elastomer

    Full text link
    Elastically-driven motion has been used as a strategy to achieve high speeds in small organisms and engineered micro-robotic devices. We examine the size-scaling relations determining the limit of elastic energy release from elastomer bands with mechanical properties similar to the biological protein resilin. The maximum center-of-mass velocity of the elastomer bands was found to be size-scale independent, while smaller bands demonstrated larger accelerations and shorter durations of elastic energy release. Scaling relationships determined from these measurements are consistent with the performance of small organisms which utilize elastic elements to power motion. Engineered devices found in the literature do not follow the same size-scaling relationships, which suggests an opportunity for improved design of engineered devices.Comment: 9 pages, 4 figure

    Non-Gaussian Radio-Wave Scattering in the Interstellar Medium

    Full text link
    It was recently suggested by Boldyrev & Gwinn that the characteristics of radio scintillations from distant pulsars are best understood if the interstellar electron-density fluctuations that cause the time broadening of the radio pulses obey non-Gaussian statistics. In this picture the density fluctuations are inferred to be strong on very small scales (1081010cm\sim 10^8-10^{10} {cm}). We argue that such density structures could correspond to the ionized boundaries of molecular regions (clouds) and demonstrate that the power-law distribution of scattering angles that is required to match the observations arises naturally from the expected intersections of our line of sight with randomly distributed, thin, approximately spherical ionized shells of this type. We show that the observed change in the time-broadening behavior for pulsar dispersion measures 30pccm3\lesssim 30 {\rm pc} {\rm cm}^{-3} is consistent with the expected effect of the general ISM turbulence, which should dominate the scattering for nearby pulsars. We also point out that if the clouds are ionized by nearby stars, then their boundaries may become turbulent on account of an ionization front instability. This turbulence could be an alternative cause of the inferred density structures. An additional effect that might contribute to the strength of the small-scale fluctuations in this case is the expected flattening of the turbulent density spectrum when the eddy sizes approach the proton gyroscale.Comment: 15 pages, 3 figures, accepted to Ap
    corecore