=

View metadata, citation and similar papers at core.ac.uk brought to you byj: CORE

provided by University of Queensland eSpace

An FPGA Implementation of Kak’s Instantaneously-Trained, Fast-Classification
Neural Networks

Jihan Zhu and Peter Sutton

School of Information Technology and Electrical Ereginng
The University of Queensland
Brisbane QLD 4072 Australia
{iihan, p.sutton@itee.uq.edu.au}

Abstract

Motivated by a biologically plausible short-memory

sketchpad, Kak's Fast Classification (FC) neuratwirks
are instantaneously trained by using a prescriptraiing
scheme. Both weights and the topology for an F@aorit
are specified with only two presentations of thaning
samples. Compared with iterative learning algorighsouch
as Backpropagation (which may require many thousanid
presentations of the training data), the trainingF&C net-
works is extremely fast and learning convergenedvislys
guaranteed. Thus FC networks are suitable for agpidons
where real-time classification and adaptive filtegi are
needed. In this paper we show that FC networkstzaed-
ware friendly” for implementation on FPGAs. Theirique
prescriptive learning scheme can be integrated il
hardware design of the FC network through parameger
tion and compile-time constant folding.

1. Introduction

There exist certain classes of real-time clasgitica/
adaptive control systems within which learning iiéical
task which must be guaranteed to finish on timedreais-
sance robots, and satellite sensory systems lo®drigter-
esting objects in unfamiliar environments are sahthe
examples of such real-time systems. In these tgpegs-
tems, one cannot fully anticipant the full rangeobfects
the classification systems may encounter. Theifilzetson
system must learn to classify these in real-tingtlaarn as
they continue to explore. Neural networks have [sbemvn
to be powerful classification tools. However, néurat-
works which are based on iterative learning albong such
as multilayer perceptrons, radial basis functiomssupport
vector machines can suffer from training bottlengtk
that is learning may not converge or take too lonige use-
ful in real-time applications even with hardwareealera-

tion. For this reason, iterative learning neuralvaoeks are
not suitable for the real-time systems where legyns a
critical task.

Kak’s Fast Classification (FC) networks [2] overam
the learning bottleneck by employing instantandeasn-
ing. The model of FC networks is motivated by ddzié
cally plausible sketchpad mechanism for short-term
memory in which learning occurs instantaneouslye Th
learning in FC networks does not suffer from therhéng
bottleneck and is always guaranteed to convergth Be
weights and the topology of an FC network are deitezd
by simple inspection of the training examples. Oty
presentations of training samples are requiredhto &an FC
network, which is extremely efficient compared wittra-
tive learning algorithms, such as backpropagatidmere
thousands of presentations of training samplessangired.

In this paper, we show that Kak’s FC networks liiir
prescriptive learning scheme are well suited fqulemen-
tation on FPGA based reconfigurable hardware piaitfo
by exploiting fine grained parallelism. We showttliae
prescriptive learning algorithm can be integrated hard-
ware design for the FC networks through paramettoia
and compile-time constant folding.

The remainder of this paper is organised as foll&es-
tion 2 describes the algorithm framework for the ifet-
works. Operations in the training and executionsplsaof
FC networks are formally presented. Section 3 pitsghe
hardware design for FC networks. The overall systsshi-
tecture is outlined first, followed by implementats for
network components: hidden neurons, hidden layk:- ru
bases and the output neurons. Section 4 discusatges
for integrating prescriptive learning with the dgsiof FC
networks and Section 5 draws some conclusions.

2. Algorithmic Framework for FC Networks

The FC networks have a three layer feed-forwartiarc
tecture which consists of a layer of inputs, a tagfedis-

https://core.ac.uk/display/14981401?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

tance based hidden neurons, a fuzzy rule basenamatjput
layer as illustrated in Fig. 1.

X

Figure 1: An lllustration of an FC Network

Input data presented to an FC network is a
long continuous-valued Vectox = (X, Xy, ...X,)
n is the length of the input and is determined kg pihob-
lem specification. Each hidden neuron (i =1, 2, ...m)
stores an exemplar training sample faithfully asaeight
vector w; = (W, 1, W, , ...W; ;) . A hidden neuron first
computes the distanag between the input vectod itgin
weight vector as shown in Fig. 2 (a).

(@) (b)

Figure 2: (a) Computation in a hidden neuron
(b) Activation function F
The distanced, , a scalar, is then passed to theatioti
function F; to produce an outphf for the hidden naur
as illustrated Fig. 2 (b). The operation of thedeid unit ac-
tivation functionF; can be specified mathematicaky

h =d d > @)
i =G i >

wherer; is defined as the radius of generalizatorhid-
den neuroni . The effect of using this activatiamction is

to make any test vector within a certain distaota
stored exemplar training sample indistinguishdiien
the training sample, and hence the test vectoheitlassi-

fied in the same output class as the training samplThe
generalization radius hence “fuzzifys” the inppase
around a training sample ; any test vector thatwéhin
this fuzzy region will be classified as the saméhastrain-
ing example.
All outputs from the hidden layer form a distanestor

h = (hyh,, ...hy,) Wwhich represents the similarity be-
tween the test vectox and each of the trainingpsesn
stored in the hidden layer of the FC network. Thstaghce
vector is then presented to the fuzzy rule basehwitiaps
the distance vectoh into a membership grade vector

M = (U, Hp .. My) - Thevecto represents the degree of
membership that the test vector has to each afulpmut
classes. The propertiespf are described below:

(O<p<)0Op Su=1. 2)
1

The output neuron then computes a dot product feetwe
the output weight vectorv = (v;,v,, ...v,) and the fuzzy
membership vectop to aggregate all fuzzy contiding
from hidden neurons to produce the final networtpatly

elemenfor the test vectok . The fuzzy aggregation issiitated in
. where Fig. 3. The fuzzy aggregation is described mathealit

as:

m
y =3 WY, ®3)
i=1
where output weight, is assigned to be the corragdipg
target outputs of each exemplar vector storedarhttiden

neurons.

Rule
base

Figure 3: Fuzzy generalization and aggregation
in the output layer.

2.1. Prescriptive Learning in FC Networks

The prescriptive learning scheme for training FG& ne
works is very simple and only requires two presona of

the training samples. The first presentation ahing sam-
ples is used to prescribe the topology and weightte the
second presentation is used to determine the rafigsn-
eralizationr; for each hidden neuron. These two ¢Bses
are described briefly below.

2.1.1. Prescribing the Topology and Weightén FC net-
work faithfully represents all training sampleshiardware
by allocating one neuron for each training sam@ieen a
training sample set, the prescriptive algorithmed®aines
directly the topology and weights of an FC netwdttke re-
quired number of input neurons is the length of itiput
vector. The number of hidden neurons equals thebpuwf
samples in the training set (i.e. each hidden neuepre-
sents one training sample). The required numbeutgut
neurons equals the desired number of outputs (oné
neuron is shown in Fig. 1 for simplicity, multi-walassifi-
cation can always be partitioned into networks witlk out-
put neuron).

With the topology of the network specified, assgni
weights for the network is done by simply inspegtthe
training samples. The first presentation of thaing sam-
ple determines the input and output weights. Tete the
training set which containa training samples and the
index; let (t; ;, 0,)p be the input-target pair of i ex-
emplar training sample to be stored at a hiddenamethen
the input weight for the hidden neuron is assigtethe

W=t Similarly, the corresponding output weight is
assigned to bey, = o;, . Hergk
input vector and the target vector.

2.1.2. Determining the radius of generalizatioThe sec-
ond presentation of the training samples is ne¢aleéter-
mine the radius of generalization for each offtluelen
neuronsi . Distances are calculated between themaem
training samplet; represented by the current hiduen
ron and all other training samples. The smallestadice
dnin IS from the training sample to its nearest nedgitb
The radius of generalization for theh hidden nauro
is then set tal;,/2 . This is to ensure that the geizeral
tion regions of all hidden neuron never overlap.

2.1.3. Generalization with Fuzzy Rule Bas#/hen a test
vector falls in one of the generalization regioradiidden
neuron, the fuzzy rule base merely acts as a ghtirggion.

are the length of the

In this way the test vector is classified as beilogdo the
same output class that the exemplar training sadyss.
The purpose of employing a fuzzy rule base in tBe F
network is to provide a generalization method tovah test
vector to have fuzzy membership grades in outasses of
its k nearest neighbours when the test vector doefah
into the generalization region of any training séamphis
is because, as mentioned above, the generalizatipons
for hidden neurons do not overlap. The fuzzy rasebpro-
vides a way to interpolate the final output foreattvector
based on its distances frdtn nearest training ebesnpl-
though a variety of fuzzy membership functionslcamised
to map the distance vectar to membership vegtahe ,
simplest is the triangular membership function. &xam-
ple, whenk = 2 , andl; d, are the distance between the
test vector and its two nearest neighbour, thengritar
membership function would be expressed as:

BEVEVE
T dl/ dl+d2)

S 11,1y
2 = dz/(dl+dz)
Fig. 4 gives an illustration for a triangular fuangmber
ship function for the two nearest neighbour castheO©
membership functions, for example the quadratiction
S, are possible. However, Kak’s experiments showttie

performance of an FC network is not significanttigeted
by the choice of the fuzzy membership function.

(5)

WX W,

Figure 4: Fuzzy membership function for 2
nearest neighbour case.

3. Implementation

Like its biological counterpart, an FC network isca
limited by its capacity to store training samplBy. pre-
scriptive learning definition, all training samplesist be

That is if hy = 0, the fuzzy membership grades are as-faithfully represented in the network. That is dridden

signed according to the following rule:

g =1 for i=j
w=0 for Q%] 4)
o2 ..,.m)

neuron in an FC network is needed to represerdiairg
sample in the training set. Hence the size of mddger is
of O(m) wherem is the total number of training samples.
Whenm is large, the hardware realization of an Efvork
is also large. To overcome this problem, the imgetation
for a hidden neuron in a FC network must be spHiment.

Various strategies are used to minimise the ressunsed
to implement the hidden neurons. Strategies aceuslsd to
simplify the implementation for the fuzzy rule basethe
fuzzy rule base sorts the distance vet¢ior to eleear-
est neighbours of a test vector. The search spaegated
to the number of hidden neurons. Specificallyy dement
full parallel bitonic sorter i©(In 2(m)) deep. These strate
gies are described below in detail.

3.1. An Overview of System Architecture

The implementation is targeted to a Celoxica RC2000

board with a Xilinx XC2V6000 Virtex-1l chip. The dign

and simulation for the hardware implementationcaried

out by using the JHDL hardware description langudge
described later, the design of an FC network iapater-
ised and integrated with the prescriptive learrscigeme to
produce design cores for final synthesis on hardwar

3.2. Hidden Neuron Circuit

The hidden neuron circuit is a critical part of thiple-
mentation. As each of the training samples in thaing
data set is required to be represented by one ihiceleron,
resources used by the hidden layer in an FC netamgk
considerable when the training set is large. Siraseare
use to make the hidden neuron circuit implememad®re-
source efficient as possible.

3.2.1. Implementation of Distance Function
As explained in section 2, hidden neurons in am&tork
are distance based, and they compute the distateedn
the input vectorx and every training sample stanethe
hidden layer as the input weights. This distandeutated
by the ith hidden layer can be expressed as:
n
di =[x -w® = 3 x;-w
j=1

wheren is the length of the input vector . In Kak@ net-
work proposal Euclidean distance is preferred beedus
rotational invariant and it minimizes the withirast classi-
fication variance. Euclidean distance is a speciae of
general distance metric, i.p.= 2 , and

p
il

(6)

n
d = Po-wi” = 3oy
j=1
However, Euclidean distance is very expensive fdém
ment on FPGAs as it requires a “squaring a nhumbpeet-
ation. If Euclidean distance were used, a hiddgarlafm
neurons, each witha element weight vector woeddire

(7)

formance is robust and it is not seriously effedbgdthe
choice of distance metric. Two alternative distamegrics
were investigated previously by [3] as replacemémtshe
Euclidean distance:
« whenp = 1, the city-block distance;
n
d = |x-w| = z ‘xi,j_wi,j’ , and (8)
j=1

* whenp = » , the box-distance:

9

In the K-means image classification context, Ektic
experiments [3] show that these two alternativaadise
metrics gave acceptable performance and are magaam
ble to FPGA hardware implementation because thdycos
“squaring” operation is avoided.

The city-block distance, which requires subtrawio
n absolute values and-1 comparisons, is selected-to i
plement the required distance computation in adridteu-
ron. The distance circuit for a four input casesl®mwn
schematically in Fig. 5 (a).

d =[x —w,

I”

= Max(pg’j—wm-]) .

for each w

Gt

If b,=0

(@)

Figure 5: (a) A four input distance circuit for a
hidden neuron. (b) Two possible half-adders
after folding of constant input weights into
subtractors
Since the input weightv becomes known after the

weights have been prescribed by training, significeal
estate savings can be made by dynamically foldieghbw
constant input weight into the subtraction circhiénce,
each of the subtractors is implemented by usingrias of
half-adders which take either of the configuratiessllus-
trated in Fig. 5 (b). The circuits for absoluteued and
comparators in the comparator-tree are realiseddiyy
standardh bit adders and subtractors respectively.

3.2.2. Implementation of Activation FunctionAs the ra-
dius of generalizationr; also becomes a constaet aft

O(mr) “squaring” operations. Fortunately, experiments training, the activation function is thus implemeshs an

conducted by Kak have shown that the FC network per bit constant comparat&iC

as shown in Fig. 6. Thestamt

comparator is implemented by folding the constgninto

a subtractor circuit as the subtractend in the dastéon as
described above. The sign bit of the comparatoeggss-
tered first then is connected to the MSB of Ibus his it

issetif d,<r; ,elseitis low. This signal is usedhe final

stage of the output layer circuit to select INNpowas dis-
cussed in next subsection.

To simplify the control of the overall circuit, addition
to storing the radius of generalization constantais decid-
ed to also store the output weighis with the atiiwn
function circuit in a register bank. The bit fréhe output
weight v; forms the nexb bits of bus
transmitting the output weights with the distanedues is
to avoid the need to track the indices for the resa
neighbour hidden neurons and be able to load tueie-
sponding output weights in the output layer stédgealter-
native to this approach is to store and transngtitidex
encoding for each hidden neuron in the
the index would occupipg(m)
are many hidden neurons (eng> 256
den neurons will require more than 8 bits to regmés
which is the width used to store and transmit thipuat
weightsy; .

The distance,
the lowern bits of bus;, . The comparator sign bi,dut-
put weightsy, and the distande are transmittedhege
through a2b+1 bit wide bus, as illustrated in Fig. 6.

Output Weight Register
A Qf V
I '

“ 8

ENB h
Distance Register 2%8+1

Q|

is also registered and then connéated

* Radius of generalization, : a constant value whigé
b bits;
* Output weightv; : a constant value which tas
Output from a hidden neuron
* bush;, hab+1 bits with:
bits [0:b-1] - distance); between
bits [b:2b-1] - output weight; ;
MSB - setifd, <r,; ;
A hidden neuron is pipelined with bit register kan
after the constant subtractors, and absolute valiie after

bits;

and

. Storing and each level of the comparator-tree. The depth optpeline

is dependent on the size of the input layer. Whenet are
n input neurons the depth of the pipelinesis [log(n) |

3.3. Implementation of the Fuzzy Rule Base

bus. Howeve The primary function of the fuzzy rule base is taprthe
bits in the bus. When there distances between a test vector and each of thingaam-
), the indices fibr hi

ples (stored in hidden neurons) into fuzzy membprsh
grades. The fuzzy rule base accomplishes this ifumdt
two ways, 1NN and kNN, which are described below:
< INN: If and only if a test vector lies within tihedius of
generalization of a hidden neuran (which implies
(d.<r,) andhy,gg = 1), the hidden neurdn fires. Ina
FC network only one hidden neuron can fire at amy g
en time because the distance regions of hidderonsur
do not overlap. In this case, the fuzzy rule basetions
as a 1NN. The fuzzy rule base acts as a gatingifumc
which assigns the fuzzy membership
signs the rest(y,j#i) to 0. The test vector will be
classified as belonging to the same output clagbes
training sample stored at hidden neuion
« KNN: Further generalization is achieved by thezfuz
rule base if a test vector does not lay within higden

to 1 and as-

| neuron’s radius of generalization, i.e. none of the
“ 8 h'mse = 1. In this case the fuzzy rule base first selects
k nearest neighbours of the test vector from tke di
tance vector and maps the distances between the tes
KC vector with each of itk nearest neighbours irdetaf

8 |d>r, > fuzzy membership grades p;,i = 1,2 .,k<m
Through this process of “fuzzification”, the deoisiof

the FC network is further generalized.

T

8

N

g
wQ

Figure 6: An eight bit example of the activation
circuit.
A collection of busesh = (h;, h,, ... h,) is connected
to the fuzzy rule base for further processing.

Notice that with either the 1NN or kNN rule, therfg
hidden neuron’s index or the indices of hidden nesrcor-
responding to th& nearest neighbours are trackedsed
to select their corresponding output weights. Weehde-
cided to simplify the fuzzy rule base because thfiali im-
plementation of the above fuzzy rule base invoieatizing
complex controls and results in variable neurandirates.
Recall from the above that 1NN rule fires instaetausly
and selects its output immediately while kNN ruéeds to

3.2.3. Parameters of a Hidden Neuroithe parameters of
a hidden neuron are listed below.
Inputs to a hidden neuron:
* Input x : a vector of length
* Input weightw; : a constant vector of length
ement had bits;

; each element has s. bit
; eakh

wait for the sorting circuit to sele&t nearestgiours
and then wait for the fuzzy computation of the ouitp fin-
ish. Specifically, the 1NN rule is now integratedoi KNN,
and the 1NN rule will not take effect until thedirstage of
the output layer. That is, regardless of whethdidalen
neuron has fired, the kNN rule always applies. @ppro-
priate 1NN or kNN output can always be selectatatast
stage of the output layer by checking the mostifagmt bit
of bush' . Ifitis set, then a hidden neuron hadfiand the
1NN output should be selected as illustrated in Elgin
next subsection. In a sense 1NN is a special dakiN:
INN'’s output is the smallest value in the neanesgh-
bour distance. Two benefits are achieved with tys
proach:

» no complex control circuitry is needed for outpatec-

tion; and
» the output neuron firing rate is now constant.

3.3.1. Implementation of kNN circuitThe kNN circuit
performs two tasks:

e Task 1: given a test vectar , the kNN circuit stdaéhe
test vector'sk nearest neighbours based on thendist
vectorh from the hidden layer.

» Task 2: it maps the distances between
est neighbours into fuzzy membership grages

The selection ok
using a bitonic selection network [4]. A bitoniclesgion
network is used because its sorting componentyveme
simple and the basic operations of the sortingrélyn are
simple and highly parallel. Different stages in #weting
network are amenable to pipelining. Fig. 7 shovecize-
matic illustration of an eight-input bitonic somimetwork
using the notation and style used by Kumar et5l.A bi-
tonic sorting network takes an unsorted seriessthdces
(transmitted by the lowen bits from bug
them into a series with monotonically increasindesr Be-
cause we are only interested in selecting neaedgh-
bours of a test vector, and we know thatm/2
bottom-left corner of the last stage of the bitosiet net-
work (shown in gray in Fig. 9) is not used.

8 | +BM[2] | g
s | | +BM[4] | g
(% —_| -BM[Z] — Selector — %
T | +BMI2] | BMIBL T g
s -BM[4] | | -
s _ | -BM[2] | | L o

Figure 7: An eight input bitonic sorting network.

Given a bitonic sequence, a bitonic merging netwask
shown in Fig. 9, is optimal and can be pipelinedoim

ankl itsar- ne

) and sort

, the

stages. Each of the pipeline stages contains babtes 2
two-input comparator-and-swap units labelled aseeit
+BM[2] or -BM[2] as shown in Fig. 8. The two-inpobm-
parator-and-swap units +BM[2] or -BM[2] sort theawle-
ments into a increasing and a decreasing ordeecésply,
and can be expressed mathematically as follows:

= min(l, r)

X
BM[2]: 10
+ []y:ma)(ir) (10)
x=max|mn
-BM[2]: v = min(i. 1) (11)

As the FC network selects nearest neighbours,enve d
sire thek smallest distances to be sorted in moizztly
increasing order, hence +BM|[2] units are used.

Although bitonic sorting networks are optimal totdm-
tonic sequences, overheads are incurred to coameuhn-
sorted sequence into a bitonic sequence. For examghe
eight input bitonic sorting network shown in Figtfe first
two stages of the network convert an unsorted seguiato
a bitonic sequence of length 8 so that the lagfestd the
eight-input bitonic sorting network can merge tharo
sorted sequence. The first two stages of the luteet
quence converter unit are shown explicitly in Ai@.

|
+BM[2] | r
8
Register

Mux \ T%x
28 [s
:’m rﬁEMux . Regminster
L
8

nearest neighbours is implemented

Register

of 8

Figure 8: Two-input comparator-and-swap
units: +BM[2] sorts two elements in increasing
order, -BM[2] sorts two elements in decreasing

order. An eight bits example is given.

Bitonic Sequence

4-Selector @
+BM[8] @ @
®)
H—®
H—
O— &—O

4 nearest neigibors

Figure 9: An eight bit example of bitonic sorting
/ selection network. The left half is unused, only
first four outputs are selected.

Unsorted Sequence

Bitonic Sequence

Figure 10: Bitonic converter network which
merges an unsorted sequence into a bitonic
sequence.

In our implementation, the unsorted sequences ®f di
tances are transmitted by buses from each neaorthrei
hidden layer. The lowest bits in each bus reprebe
distance value. The distance values form an urdege
guence. This unsorted sequence of distance vaarebe
seen as a concatenation of bitonic sequences ®ftwia
They are first converted biggn —1 stages of bitonic merg
ing networks. Starting with pairs of +BM[2] and -B2]
units, then pairs of +BM[4] and -BM[4] units, and en,
each stage merges a sequence which is twice asoitg
input until a bitonic sequence af is reached. Titgnic
sequence of length can then be merged byithe t lnipu
tonic sorting network and transformed into sorteguenc-
es.

The final task of the fuzzy rule base is to mapsblect-

ed k nearest neighbour distances into fuzzy memipersh their ranks, and their outpugs

grades. The triangular fuzzy membership functioedus

Tang and Kak’s original work for the two nearesghéour
case is shown in Fig. 4. Straightforward implemgote of
the triangular fuzzy membership functions woulduieg a
large number of division operations and would by &x-
pensive to realize on FPGAs. Fortunately, theieeixpents
also found that the FC network is robust with theice of
fuzzy membership functions. We have decided tcauge
ear approximation of the triangular fuzzy membaersainc-
tions. In particular, depend on their ranking, ea€tthe
selectedk nearest neighbours is assigned lineaghteei
which approximate the triangle fuzzy membershigfiom.
For example, wherk = 4 , the fuzzy membership grades
assigned to the four nearest neighbours are 24/32, 2/
32 and 2/32 respectively. The weights sum to 1raadot-
onically decrease as ranking increases. Althougbaratets
of weights are possible, the above weights are tagp-
plement in FPGAs as the weights are equivalentderigs
of right shift operations as seen in the outputroewircuit
(see Fig. 11).

3.3.2. Parameters of the Fuzzy Rule BaSéhe
ters of the fuzzy rule base are listed below.
Inputs to the Fuzzy Rule Base:
« asetom buses = (h, h,, ... h,)
bits wide with:
bits [0:b-1] - distance); between
bits [b:2b-1] - output weight;, ;
MSB - setifd, <r,; ;
* m a constant which is the number of hidden neurons;
* k, (k« m a constant which defines the number of near-
est neighbours.

parame-

. Each bugis+ 1

and

Output from the Fuzzy Rule Base
«a selected set ofk nearest neighbour
H = (K Hp - by With the distance valueg g,
sorted in monotonically increasing order. The wialtid
content of bugu is the same as hus

buses

The fuzzy rule base circuit is pipelined wigh + 1 bit
register banks after each stages of bitonic sorngtgork.
Hence the depth of the pipeline is the depth afriiit sort-
ing network which is a variable which dependsnonhe t

number of hidden neuronE(Iog m+ logm)/ 2
3.4. Output Neuron Circuit

Buses belonging to sortéd nearest neighboursoare ¢
nected to the output neuron circuit in a increasirdgr ac-
cording to their ranking in the previous stage. Thezy
membership grades are hardware encoded with rasfmect
the middle bitthefbus
are weighted by these fuzzy grades as illustratédg. 11.

The contributions for allk
summed by an adder.

nearest neighbours drent

\\/6'9’\ delay H delayH delay H delay H delay H delay

Figure 11: Output neuron circuit.

The final output is selected to be either 1NN ohkéle-
pending on the MSB of the smallest neighbour efsavec-
tor. If MSB is set, it means a hidden neuron hasdfi
previously in the hidden layer and hence the cpomeding
output class of that hidden neuron is selectecktthé final
output. If MSB is not set, the kNN output is valahd the
final output is the kNN fuzzification output.

In our design, we have decided to fix= 4
enence. The pipeline register banks of widlth @aserited
after each of parallel-right shift stages, andaaheleaf of
the addition tree. The pipeline depth in this céise 4) is
6. The final output is to be interpreted as a I6slgned
fixed point two’s complement number with 1 sign Bitbit
integer and 8 bit fraction.

4. Integrating Prescriptive Learning with the
Design of FC Networks

The training for an FPGA based FC network is cdrrie

out offline because the training of an FC netwaknot
computationally intensive. Offline training allovier com-
pile-time folding of constants and hardwiring ofnstants
into the circuit functionality. A JHDL package isitten to
fully parameterize the design for an FC networke Ttid-
ing of the input weightsy and the radius of gerieatibn
r into constant subtractors / comparators; the higirtywof
a set of fuzzy membership grades into constantiptiak-
tions and divisions in the output neuron circué aarried
out by the JHDL package at the compile-time. Giaeset
of training data and the required precision spedifiy the
user, the JDHL package automatically defines theltgy
and weights for the FC network as well as designimg
whole circuit for the appropriate FC network. Sfieally,
the JDHL package contains a main class and foauitir
generator classes for instantiating the hiddenaredircuit,
the activation function circuit, the bitonic sodimetwork

for convi-

circuit and the output neuron circuit. The mairsslés re-
sponsible for instantiating the required circuitdales and
connecting them together according to the probleeti§i-

cation, the training sample size and the numbetho$e
training samples to be stored. Each of the cirgeiterator
classes is responsible for designing the correspgrsiib-
modules according to specific information suchhessizes,
the constants and required stages of pipelineshdéinal

output, the main class generates an EDIF configurdbr

the fully instantiated circuit object as the sauatfor the re-
quired FC network.

5. Conclusions

We have shown that computational characteristi¢gof
networks are highly parallel, simple and modulanege
characteristics are well suited for FPGA implemgata
exploiting fine-grained parallelism. We have al$mwn
that the prescriptive learning scheme of FC neta/gda be
integrated with the design of the FC network sa tihe im-
plementation of an FC network can be fully paramiste.
Strategies to reduce the resource cost by usingit@itime
constant folding techniques are also discussederGits
fast training speed, and the ease of mapping iR@A-ar-
chitectures, FC networks are a better alternativether
neural network models which are based on iterdégaen-

ing.
References

[1] Chakrabarti, S., S. Roy, and M.V. Soundalgekaast
and Accurate Text Classification via Multiple Limea
Discriminant Projections’in proceedings of Interna-
tional Conference on Very Large Data Bas2301,
Morgan Kaufmann: Hong Kong. p. 658-669.

[2] Tang, K.W. and S. Kak, “Fast Classification Netks
for Signal ProcessingCircuits Systems Signal
Processing2002. 212): p. 207-224.

[3] Estlick, M., et al., “Algorithmic transformatienin the
implementation of K- means clustering on reconfigur
ble hardware”in proceedings of the Ninth ACM Inter-
national Symposium on Field-Programmable Gate
Arrays 2001, ACM SIGDA: California. p. 103-110.

[4] Batcher, K.E., “Sorting Networks and Their Apgak
tions”, in Proceedings of American Federation of In-
formation Processing Societies 1968 Spring Joint
Computer Conferencd 968, Thomson Book Compa-
ny, Washington D.C.: Atlantic City, NJ, USA. p. 307
314.

[5] Kumar, V., et al., “Bitonic Sorting’in Introduction to
Parallel Computing - Design and Analysis of Algo-
rithms 1994, The Benjamin/Cummings Publishing
Company, Inc.: California. p. 214-224.

	Abstract
	1. Introduction
	2. Algorithmic Framework for FC Networks
	2.1. Prescriptive Learning in FC Networks
	2.1.1. Prescribing the Topology and Weights
	2.1.2. Determining the radius of generalization
	2.1.3. Generalization with Fuzzy Rule Base

	3. Implementation
	3.1. An Overview of System Architecture
	3.2. Hidden Neuron Circuit
	3.2.1. Implementation of Distance Function
	3.2.2. Implementation of Activation Function
	3.2.3. Parameters of a Hidden Neuron

	3.3. Implementation of the Fuzzy Rule Base
	3.3.1. Implementation of kNN circuit
	3.3.2. Parameters of the Fuzzy Rule Base

	3.4. Output Neuron Circuit

	4. Integrating Prescriptive Learning with the Design of FC Networks
	5. Conclusions
	References
	An FPGA Implementation of Kak’s Instantaneously-Trained, Fast-Classification Neural Networks

