20,328 research outputs found
Non-destructive trace element microanalysis of as-received cometary nucleus samples using synchrotron x ray fluorescence
The Synchrotron X ray Fluorescence (SXRF) microprobe at the National Synchrotron Light Source (NSLS), Brookhaven National Laboratory, will be an excellent instrument for non-destructive trace element analyses of cometary nucleus samples. Trace element analyses of as-received cometary nucleus material will also be possible with this technique. Bulk analysis of relatively volatile elements will be important in establishing comet formation conditions. However, as demonstrated for meteorites, microanalyses of individual phases in their petrographic context are crucial in defining the histories of particular components in unequilibrated specimens. Perhaps most informative in comparing cometary material with meteorites will be the halogens and trace metals. In-situ, high spatial resolution microanalyses will be essential in establishing host phases for these elements and identifying terrestrial (collection/processing) overprints. The present SXRF microprobe is a simple, yet powerful, instrument in which specimens are excited with filtered, continuum synchrotron radiation from a bending magnet on a 2.5 GeV electron storage ring. A refrigerated cell will be constructed to permit analyses at low temperatures. The cell will consist essentially of an air tight housing with a cold stage. Kapton windows will be used to allow the incident synchrotron beam to enter the cell and fluorescent x rays to exit it. The cell will be either under vacuum or continuous purge by ultrapure helium during analyses. Several other improvements of the NSLS microprobe will be made prior to the cometary nucleus sample return mission that will greatly enhance the sensitivity of the technique
Thermoluminescence of Antarctic meteorites: A rapid screening technique for terrestrial age estimation, pairing studies and identification of specimens with unusual prefall histories
Thermoluminescence (TL) is a promising technique for rapid screening of the large numbers of Antarctic meteorites, permitting identification of interesting specimens that can then be studied in detail by other, more definite techniques. Specifically, TL permits determination of rough terrestrial age, identification of potential paired groups and location of specimens with unusual pre-fall histories. Meteorites with long terrestrial ages are particularly valuable for studying transport and weathering mechanisms. Pairing studies are possible because TL variations among meteorites are large compared to variations within individual objects, especially for natural TL. Available TL data for several L3 fragments, three of which were paired by other techniques, are presented as an example of the use of TL parameters in pairing studies. Additional TL measurements, specifically a blind test, are recommended to satisfactorily establish the reliability of this pairing property. The TL measurements also identify fragments with unusual pre-fall histories, such an near-Sun orbits
Trace element abundance determinations by Synchrotron X Ray Fluorescence (SXRF) on returned comet nucleus mineral grains
Trace element analyses were performed on bulk cosmic dust particles by Proton Induced X Ray Emission (PIXE) and Synchrotron X Ray Fluorescence (SXRF). When present at or near chondritic abundances the trace elements K, Ti, Cr, Mn, Cu, Zn, Ga, Ge, Se, and Br are presently detectable by SXRF in particles of 20 micron diameter. Improvements to the SXRF analysis facility at the National Synchrotron Light Source presently underway should increase the range of detectable elements and permit the analysis of smaller samples. In addition the Advanced Photon Source will be commissioned at Argonne National Laboratory in 1995. This 7 to 8 GeV positron storage ring, specifically designed for high-energy undulator and wiggler insertion devices, will be an ideal source for an x ray microprobe with one micron spatial resolution and better than 100 ppb elemental sensitivity for most elements. Thus trace element analysis of individual micron-sized grains should be possible by the time of the comet nucleus sample return mission
A NEW APPROACH FOR ASSESSING THE COSTS OF LIVING WITH WILDLIFE IN DEVELOPING COUNTRIES
The costs of living with wildlife are assessed using Namibian subsistence farmers willingness to pay (WTP) for deterrents to attacks on crops and livestock as a measure of damage costs. A utility-theoretic approach jointly estimates household WTP for deterrent programs in two currencies, maize and cash. This has a double payoff. Use of a noncash staple increases respondent comprehension and provides more information about preferences, improving the accuracy of results. The household shadow value of maize is also identified. Significant costs from living with elephants and other types of wildlife are demonstrated. Compensation for farmers may be warranted on equity and efficiency grounds. Uncontrolled domestic cattle generate even higher costs to farmers than wildlife, highlighting the need to clarify property rights among these farmers.Resource /Energy Economics and Policy,
Simple threshold rules solve explore/exploit trade‐offs in a resource accumulation search task
How, and how well, do people switch between exploration and exploitation to search for and accumulate resources? We study the decision processes underlying such exploration/exploitation trade‐offs using a novel card selection task that captures the common situation of searching among multiple resources (e.g., jobs) that can be exploited without depleting. With experience, participants learn to switch appropriately between exploration and exploitation and approach optimal performance. We model participants' behavior on this task with random, threshold, and sampling strategies, and find that a linear decreasing threshold rule best fits participants' results. Further evidence that participants use decreasing threshold‐based strategies comes from reaction time differences between exploration and exploitation; however, participants themselves report non‐decreasing thresholds. Decreasing threshold strategies that “front‐load” exploration and switch quickly to exploitation are particularly effective in resource accumulation tasks, in contrast to optimal stopping problems like the Secretary Problem requiring longer exploration
Determination of high temperature strains using a PC based vision system
With the widespread availability of video digitizers and cheap personal computers, the use of computer vision as an experimental tool is becoming common place. These systems are being used to make a wide variety of measurements that range from simple surface characterization to velocity profiles. The Sub-Pixel Digital Image Correlation technique has been developed to measure full field displacement and gradients of the surface of an object subjected to a driving force. The technique has shown its utility by measuring the deformation and movement of objects that range from simple translation to fluid velocity profiles to crack tip deformation of solid rocket fuel. This technique has recently been improved and used to measure the surface displacement field of an object at high temperature. The development of a PC based Sub-Pixel Digital Image Correlation system has yielded an accurate and easy to use system for measuring surface displacements and gradients. Experiments have been performed to show the system is viable for measuring thermal strain
Impurity segregation in graphene nanoribbons
The electronic properties of low-dimensional materials can be engineered by
doping, but in the case of graphene nanoribbons (GNR) the proximity of two
symmetry-breaking edges introduces an additional dependence on the location of
an impurity across the width of the ribbon. This introduces energetically
favorable locations for impurities, leading to a degree of spatial segregation
in the impurity concentration. We develop a simple model to calculate the
change in energy of a GNR system with an arbitrary impurity as that impurity is
moved across the ribbon and validate its findings by comparison with ab initio
calculations. Although our results agree with previous works predicting the
dominance of edge disorder in GNR, we argue that the distribution of adsorbed
impurities across a ribbon may be controllable by external factors, namely an
applied electric field. We propose that this control over impurity segregation
may allow manipulation and fine-tuning of the magnetic and transport properties
of GNRs.Comment: 5 pages, 4 figures, submitte
Trajectory computational techniques emphasizing existence, uniqueness, and construction of solutions to boundary problems for ordinary differential equations Final report
Trajectory computational techniques emphasizing existence, uniqueness, and construction of solutions to boundary problems for ordinary differential equation
Theory and Simulation of the diffusion of kinks on dislocations in bcc metals
Isolated kinks on thermally fluctuating (1/2) screw, edge and
(1/2) edge dislocations in bcc iron are simulated under zero stress
conditions using molecular dynamics (MD). Kinks are seen to perform stochastic
motion in a potential landscape that depends on the dislocation character and
geometry, and their motion provides fresh insight into the coupling of
dislocations to a heat bath. The kink formation energy, migration barrier and
friction parameter are deduced from the simulations. A discrete
Frenkel-Kontorova-Langevin (FKL) model is able to reproduce the coarse grained
data from MD at a fraction of the computational cost, without assuming an a
priori temperature dependence beyond the fluctuation-dissipation theorem.
Analytic results reveal that discreteness effects play an essential r\^ole in
thermally activated dislocation glide, revealing the existence of a crucial
intermediate length scale between molecular and dislocation dynamics. The model
is used to investigate dislocation motion under the vanishingly small stress
levels found in the evolution of dislocation microstructures in irradiated
materials
- …