188 research outputs found

    Efficient Approximation of Quantum Channel Capacities

    Full text link
    We propose an iterative method for approximating the capacity of classical-quantum channels with a discrete input alphabet and a finite dimensional output, possibly under additional constraints on the input distribution. Based on duality of convex programming, we derive explicit upper and lower bounds for the capacity. To provide an ε\varepsilon-close estimate to the capacity, the presented algorithm requires O((NM)M3log(N)1/2ε)O(\tfrac{(N \vee M) M^3 \log(N)^{1/2}}{\varepsilon}), where NN denotes the input alphabet size and MM the output dimension. We then generalize the method for the task of approximating the capacity of classical-quantum channels with a bounded continuous input alphabet and a finite dimensional output. For channels with a finite dimensional quantum mechanical input and output, the idea of a universal encoder allows us to approximate the Holevo capacity using the same method. In particular, we show that the problem of approximating the Holevo capacity can be reduced to a multidimensional integration problem. For families of quantum channels fulfilling a certain assumption we show that the complexity to derive an ε\varepsilon-close solution to the Holevo capacity is subexponential or even polynomial in the problem size. We provide several examples to illustrate the performance of the approximation scheme in practice.Comment: 36 pages, 1 figur

    A variational approach to path estimation and parameter inference of hidden diffusion processes

    Full text link
    We consider a hidden Markov model, where the signal process, given by a diffusion, is only indirectly observed through some noisy measurements. The article develops a variational method for approximating the hidden states of the signal process given the full set of observations. This, in particular, leads to systematic approximations of the smoothing densities of the signal process. The paper then demonstrates how an efficient inference scheme, based on this variational approach to the approximation of the hidden states, can be designed to estimate the unknown parameters of stochastic differential equations. Two examples at the end illustrate the efficacy and the accuracy of the presented method.Comment: 37 pages, 2 figures, revise

    Convex programming in optimal control and information theory

    Full text link
    The main theme of this thesis is the development of computational methods for classes of infinite-dimensional optimization problems arising in optimal control and information theory. The first part of the thesis is concerned with the optimal control of discrete-time continuous space Markov decision processes (MDP). The second part is centred around two fundamental problems in information theory that can be expressed as optimization problems: the channel capacity problem as well as the entropy maximization subject to moment constraints.Comment: PhD thesis, ETH Zuric

    Performance Bounds for the Scenario Approach and an Extension to a Class of Non-convex Programs

    Full text link
    We consider the Scenario Convex Program (SCP) for two classes of optimization problems that are not tractable in general: Robust Convex Programs (RCPs) and Chance-Constrained Programs (CCPs). We establish a probabilistic bridge from the optimal value of SCP to the optimal values of RCP and CCP in which the uncertainty takes values in a general, possibly infinite dimensional, metric space. We then extend our results to a certain class of non-convex problems that includes, for example, binary decision variables. In the process, we also settle a measurability issue for a general class of scenario programs, which to date has been addressed by an assumption. Finally, we demonstrate the applicability of our results on a benchmark problem and a problem in fault detection and isolation.Comment: 19 pages, revised versio

    Isospectral flows on a class of finite-dimensional Jacobi matrices

    Full text link
    We present a new matrix-valued isospectral ordinary differential equation that asymptotically block-diagonalizes n×nn\times n zero-diagonal Jacobi matrices employed as its initial condition. This o.d.e.\ features a right-hand side with a nested commutator of matrices, and structurally resembles the double-bracket o.d.e.\ studied by R.W.\ Brockett in 1991. We prove that its solutions converge asymptotically, that the limit is block-diagonal, and above all, that the limit matrix is defined uniquely as follows: For nn even, a block-diagonal matrix containing 2×22\times 2 blocks, such that the super-diagonal entries are sorted by strictly increasing absolute value. Furthermore, the off-diagonal entries in these 2×22\times 2 blocks have the same sign as the respective entries in the matrix employed as initial condition. For nn odd, there is one additional 1×11\times 1 block containing a zero that is the top left entry of the limit matrix. The results presented here extend some early work of Kac and van Moerbeke.Comment: 19 pages, 3 figures, conjecture from previous version is added as assertion (iv) of the main theorem including a proof; other major change

    From Infinite to Finite Programs: Explicit Error Bounds with Applications to Approximate Dynamic Programming

    Full text link
    We consider linear programming (LP) problems in infinite dimensional spaces that are in general computationally intractable. Under suitable assumptions, we develop an approximation bridge from the infinite-dimensional LP to tractable finite convex programs in which the performance of the approximation is quantified explicitly. To this end, we adopt the recent developments in two areas of randomized optimization and first order methods, leading to a priori as well as a posterior performance guarantees. We illustrate the generality and implications of our theoretical results in the special case of the long-run average cost and discounted cost optimal control problems for Markov decision processes on Borel spaces. The applicability of the theoretical results is demonstrated through a constrained linear quadratic optimal control problem and a fisheries management problem.Comment: 30 pages, 5 figure

    Optimal Learning via Moderate Deviations Theory

    Full text link
    This paper proposes a statistically optimal approach for learning a function value using a confidence interval in a wide range of models, including general non-parametric estimation of an expected loss described as a stochastic programming problem or various SDE models. More precisely, we develop a systematic construction of highly accurate confidence intervals by using a moderate deviation principle-based approach. It is shown that the proposed confidence intervals are statistically optimal in the sense that they satisfy criteria regarding exponential accuracy, minimality, consistency, mischaracterization probability, and eventual uniformly most accurate (UMA) property. The confidence intervals suggested by this approach are expressed as solutions to robust optimization problems, where the uncertainty is expressed via the underlying moderate deviation rate function induced by the data-generating process. We demonstrate that for many models these optimization problems admit tractable reformulations as finite convex programs even when they are infinite-dimensional.Comment: 35 pages, 3 figure
    corecore