1,323 research outputs found

    Structural analysis of three space crane articulated-truss joint concepts

    Get PDF
    Three space crane articulated truss joint concepts are studied to evaluate their static structural performance over a range of geometric design parameters. Emphasis is placed on maintaining the four longeron reference truss performance across the joint while allowing large angle articulation. A maximum positive articulation angle and the actuator length ratio required to reach the angle are computed for each concept as the design parameters are varied. Configurations with a maximum articulation angle less than 120 degrees or actuators requiring a length ratio over two are not considered. Tip rotation and lateral deflection of a truss beam with an articulated truss joint at the midspan are used to select a point design for each concept. Deflections for one point design are up to 40 percent higher than for the other two designs. Dynamic performance of the three point design is computed as a function of joint articulation angle. The two lowest frequencies of each point design are relatively insensitive to large variations in joint articulation angle. One point design has a higher maximum tip velocity for the emergency stop than the other designs

    A comparison of two trusses for the space station structure

    Get PDF
    The structural performance of two truss configurations, the orthogonal tetrahedral and a Warren-type, are compared using finite element models representing the November Reference Phase 1 Space Station. The truss torsional stiffness properties and fundamental torsion frequency are determined using cantilever truss-beam models. Frequencies, mode shapes, transient response, and truss strut compressive loads are compared for the two space station models. The performance benefit resulting from using a high modulus truss strut is also presented. Finally, assembly and logistics characteristics of the two truss configurations are evaluated

    Investigation of resolution loss in contact exposure of transparent electrophotographic films

    Get PDF
    A study was performed to determine the nature of the effects causing resolution loss in contact exposure Transparent Electrophotographic (TEP) films. Target and TEP film characteristics were varied and resolution was measured under magnification. Results indicated that the factors responsible for resolution loss included the grain structure of the original target, moisture content of the target emulsion, and surface charge of the target. No conclusions could be made for the effect of TEP photoconductor coating thickness

    Multidisciplinary analysis of actively controlled large flexible spacecraft

    Get PDF
    The control of Flexible Structures (COFS) program has supported the development of an analysis capability at the Langley Research Center called the Integrated Multidisciplinary Analysis Tool (IMAT) which provides an efficient data storage and transfer capability among commercial computer codes to aid in the dynamic analysis of actively controlled structures. IMAT is a system of computer programs which transfers Computer-Aided-Design (CAD) configurations, structural finite element models, material property and stress information, structural and rigid-body dynamic model information, and linear system matrices for control law formulation among various commercial applications programs through a common database. Although general in its formulation, IMAT was developed specifically to aid in the evaluation of the structures. A description of the IMAT system and results of an application of the system are given

    Structurally adaptive space crane concept for assembling space systems on orbit

    Get PDF
    Many future human space exploration missions will probably require large vehicles that must be assembled on orbit. Thus, a device that can move, position, and assemble large and massive spacecraft components on orbit becomes essential for these missions. A concept is described for such a device: a space crane concept that uses erectable truss hardware to achieve high-stiffness and low-mass booms and uses articulating truss joints that can be assembled on orbit. The hardware has been tested and shown to have linear load-deflection response and to be structurally predictable. The hardware also permits the crane to be reconfigured into different geometries to satisfy future assembly requirements. A number of articulating and rotary joint concepts have been sized and analyzed, and the results are discussed. Two strategies were proposed to suppress motion-induced vibration: placing viscous dampers in selected truss struts and preshaping motion commands. Preliminary analyses indicate that these techniques have the potential to greatly enhance structural damping

    Challenges and possible clinical applications of human embryonic stem cell research

    Get PDF
    Human embryonic stem cells (hESC) are harvested from the inner cell mass of the pre-implantation embryo and possess several unique characteristics. First, they are self-renewing, meaning they can grow indefinitely in an appropriate culture environment and secondly, they are pluripotent, which means they have the potential to become nearly every cell of the human body. Consequently, hESC offer a unique insight into basic human development in vitro, allow better understanding of the genetic and molecular controls of these processes, and are of pharmaceutical interest to test or develop new drugs. The most exciting and high-profile potential application of hESC research is the possibility that such cells can be used for regenerative medicine. Still, several obstacles have to be overcome before clinical applications can be considered: (i) xeno-free derivation and culture of hESC is necessary; (ii) hESC should be safe after transplantation and (iii) their identity and behaviour should be well-known

    Reference loci for RT-qPCR analysis of differentiating human embryonic stem cells

    Get PDF
    Background: Selecting stably expressed reference genes is essential for proper reverse transcription quantitative polymerase chain reaction gene expression analysis. However, this choice is not always straightforward. In the case of differentiating human embryonic stem (hES) cells, differentiation itself introduces changes whereby reference gene stability may be influenced. Results: In this study, we evaluated the stability of various references during retinoic acid-induced (2 microM) differentiation of hES cells. Out of 12 candidate references, beta-2-microglobulin, ribosomal protein L13A and Alu repeats are found to be the most stable for this experimental set-up. Conclusions: Our results show that some of the commonly used reference genes are actually not amongst the most stable loci during hES cell differentiation promoted by retinoic acid. Moreover, a novel normalization strategy based on expressed Alu repeats is validated for use in hES cell experiments

    Generalized Multimodal ELBO

    Full text link
    Multiple data types naturally co-occur when describing real-world phenomena and learning from them is a long-standing goal in machine learning research. However, existing self-supervised generative models approximating an ELBO are not able to fulfill all desired requirements of multimodal models: their posterior approximation functions lead to a trade-off between the semantic coherence and the ability to learn the joint data distribution. We propose a new, generalized ELBO formulation for multimodal data that overcomes these limitations. The new objective encompasses two previous methods as special cases and combines their benefits without compromises. In extensive experiments, we demonstrate the advantage of the proposed method compared to state-of-the-art models in self-supervised, generative learning tasks.Comment: 2021 ICL

    Multimodal Generative Learning Utilizing Jensen-Shannon-Divergence

    Full text link
    Learning from different data types is a long-standing goal in machine learning research, as multiple information sources co-occur when describing natural phenomena. However, existing generative models that approximate a multimodal ELBO rely on difficult or inefficient training schemes to learn a joint distribution and the dependencies between modalities. In this work, we propose a novel, efficient objective function that utilizes the Jensen-Shannon divergence for multiple distributions. It simultaneously approximates the unimodal and joint multimodal posteriors directly via a dynamic prior. In addition, we theoretically prove that the new multimodal JS-divergence (mmJSD) objective optimizes an ELBO. In extensive experiments, we demonstrate the advantage of the proposed mmJSD model compared to previous work in unsupervised, generative learning tasks.Comment: Accepted at NeurIPS 2020, camera-ready versio

    Structural characterization of a first-generation articulated-truss joint for space crane application

    Get PDF
    A first-generation space crane articulated-truss joint was statically and dynamically characterized in a configuration that approximated an operational environment. The articulated-truss joint was integrated into a test-bed for structural characterization. Static characterization was performed by applying known loads and measuring the corresponding deflections to obtain load-deflection curves. Dynamic characterization was performed using modal testing to experimentally determine the first six mode shapes, frequencies, and modal damping values. Static and dynamic characteristics were also determined for a reference truss that served as a characterization baseline. Load-deflection curves and experimental frequency response functions are presented for the reference truss and the articulated-truss joint mounted in the test-bed. The static and dynamic experimental results are compared with analytical predictions obtained from finite element analyses. Load-deflection response is also presented for one of the linear actuators used in the articulated-truss joint. Finally, an assessment is presented for the predictability of the truss hardware used in the reference truss and articulated-truss joint based upon hardware stiffness properties that were previously obtained during the Precision Segmented Reflector (PSR) Technology Development Program
    corecore