92 research outputs found

    Provenance of the upper Eocene Castle Rock Conglomerate, south Denver Basin, Colorado, U.S.A.

    Get PDF
    The Castle Rock Conglomerate contains distinctive clasts from the Colorado Front Range, and when combined with detrital zircon ages, the unit can be subdivided into two lithofacies. Precambrian quartzites and stretched-pebble conglomerates from Coal Creek Canyon (to the northwest of the Castle Rock Conglomerate outcrop belt) and detrital zircons from Precambrian and Tertiary igneous rocks identify a northern provenance with detritus derived from tens of kilometers northwest of Denver, Colorado. A second source, composed of mainly granite from the Pikes Peak batholith, lies in the southern Front Range west of the Castle Rock Conglomerate outcrop belt. Both the north and west lithofacies can be mapped in the Castle Rock Conglomerate outcrop belt by using the presence (north) and absence (west) of Coal Creek Canyon quartzite clasts. This distinction is confirmed by detrital zircon ages. The north lithofacies dominates the present-day, northernmost outcrops, but dilution and interbedding with west lithofacies increase as the southeast-flowing basin axial paleodrainage meets piedmont tributaries that carried Pikes Peak batholith detritus from the west and southwest. The basin axial drainage transported coarse conglomerate southward about 120 km during Castle Rock Conglomerate deposition (36.7-34.0 Ma). The Precambrian quartzite exposed in Coal Creek Canyon is interpreted to be an important point source that can be useful in provenance studies of sediments shed from the Colorado Front Range. Additionally, detrital zircons from Laramide-age igneous rocks show potential for improved stratigraphic resolution in Paleogene strata of the Denver Basin

    An experimental study to discriminate between the validity of diffraction theories for off-Bragg replay

    Full text link
    We show that experiments clearly verify the assumptions made by the first-order two-wave coupling theory for one dimensional lossless unslanted planar volume holographic gratings using the beta-value method rather than Kogelnik's K-vector closure method. Apart from the fact that the diffraction process is elastic, a much more striking difference between the theories becomes apparent particularly in the direction of the diffracted beam in off-Bragg replay. We therefore monitored the direction of the diffracted beam as a function of the off-Bragg replay angle in two distinct cases: [a] the diffracted beam lies in the plane of incidence and [b] the sample surface normal, the grating vector and the incoming beam do not form a plane which calls for the vectorial theory and results in conical scattering.Comment: Corrected Eqs. (3) & (6); 14 pages, 8 figure

    Galaxy Clusters as Reservoirs of Heavy Dark Matter and High-Energy Cosmic Rays: Constraints from Neutrino Observations

    Full text link
    Galaxy Clusters (GCs) are the largest reservoirs of both dark matter and cosmic rays (CRs). Dark matter self-annihilation can lead to a high luminosity in gamma rays and neutrinos, enhanced by a strong degree of clustering in dark matter substructures. Hadronic CR interactions can also lead to a high luminosity in gamma rays and neutrinos, enhanced by the confinement of CRs from cluster accretion/merger shocks and active galactic nuclei. We show that IceCube/KM3Net observations of high-energy neutrinos can probe the nature of GCs and the separate dark matter and CR emission processes, taking into account how the results depend on the still-substantial uncertainties. Neutrino observations are relevant at high energies, especially at >10 TeV. Our results should be useful for improving experimental searches for high-energy neutrino emission. Neutrino telescopes are sensitive to extended sources formed by dark matter substructures and CRs distributed over large scales. Recent observations by Fermi and imaging atmospheric Cherenkov telescopes have placed interesting constraints on the gamma-ray emission from GCs. We also provide calculations of the gamma-ray fluxes, taking into account electromagnetic cascades inside GCs, which can be important for injections at sufficiently high energies. This also allows us to extend previous gamma-ray constraints to very high dark matter masses and significant CR injections at very high energies. Using both neutrinos and gamma rays, which can lead to comparable constraints, will allow more complete understandings of GCs. Neutrinos are essential for some dark matter annihilation channels, and for hadronic instead of electronic CRs. Our results suggest that the multi-messenger observations of GCs will be able to give useful constraints on specific models of dark matter and CRs. [Abstract abridged.]Comment: 31 pages, 20 figures, 1 table, accepted for publication in JCAP, references and discussions adde

    Measurement of the Proton Spin Structure Function g1p with a Pure Hydrogen Target

    Get PDF
    A measurement of the proton spin structure function g1p(x,Q^2) in deep-inelastic scattering is presented. The data were taken with the 27.6 GeV longitudinally polarised positron beam at HERA incident on a longitudinally polarised pure hydrogen gas target internal to the storage ring. The kinematic range is 0.021<x<0.85 and 0.8 GeV^2<Q^2<20 GeV^2. The integral Int_{0.021}^{0.85} g1p(x)dx evaluated at Q0^2 of 2.5 GeV^2 is 0.122+/-0.003(stat.)+/-0.010(syst.).Comment: 7 pages, 3 figures, 1 table, RevTeX late

    Determination of the Deep Inelastic Contribution to the Generalised Gerasimov-Drell-Hearn Integral for the Proton and Neutron

    Full text link
    The virtual photon absorption cross section differences [sigma_1/2-sigma_3/2] for the proton and neutron have been determined from measurements of polarised cross section asymmetries in deep inelastic scattering of 27.5 GeV longitudinally polarised positrons from polarised 1H and 3He internal gas targets. The data were collected in the region above the nucleon resonances in the kinematic range nu < 23.5 GeV and 0.8 GeV**2 < Q**2 < 12 GeV**2. For the proton the contribution to the generalised Gerasimov-Drell-Hearn integral was found to be substantial and must be included for an accurate determination of the full integral. Furthermore the data are consistent with a QCD next-to-leading order fit based on previous deep inelastic scattering data. Therefore higher twist effects do not appear significant.Comment: 6 pages, 3 figures, 1 table, revte

    Observation of a Coherence Length Effect in Exclusive Rho^0 Electroproduction

    Get PDF
    Exclusive incoherent electroproduction of the rho^0(770) meson from 1H, 2H, 3He, and 14N targets has been studied by the HERMES experiment at squared four-momentum transfer Q**2>0.4 GeV**2 and positron energy loss nu from 9 to 20 GeV. The ratio of the 14N to 1H cross sections per nucleon, known as the nuclear transparency, was found to decrease with increasing coherence length of quark-antiquark fluctuations of the virtual photon. The data provide clear evidence of the interaction of the quark- antiquark fluctuations with the nuclear medium.Comment: RevTeX, 5 pages, 3 figure

    Measurement of the Neutron Spin Structure Function g1ng_1^n with a Polarized ^3He Target

    Get PDF
    Results are reported from the HERMES experiment at HERA on a measurement of the neutron spin structure function g1n(x,Q2)g_1^n(x,Q^2) in deep inelastic scattering using 27.5 GeV longitudinally polarized positrons incident on a polarized 3^3He internal gas target. The data cover the kinematic range 0.023<x<0.60.023<x<0.6 and 1(GeV/c)2<Q2<15(GeV/c)21 (GeV/c)^2 < Q^2 <15 (GeV/c)^2. The integral 0.0230.6g1n(x)dx\int_{0.023}^{0.6} g_1^n(x) dx evaluated at a fixed Q2Q^2 of 2.5(GeV/c)22.5 (GeV/c)^2 is 0.034±0.013(stat.)±0.005(syst.)-0.034\pm 0.013(stat.)\pm 0.005(syst.). Assuming Regge behavior at low xx, the first moment Γ1n=01g1n(x)dx\Gamma_1^n=\int_0^1 g_1^n(x) dx is 0.037±0.013(stat.)±0.005(syst.)±0.006(extrapol.)-0.037\pm 0.013(stat.)\pm 0.005(syst.)\pm 0.006(extrapol.).Comment: 4 pages TEX, text available at http://www.krl.caltech.edu/preprints/OAP.htm

    Flavor Decomposition of the Polarized Quark Distributions in the Nucleon from Inclusive and Semi-inclusive Deep-inelastic Scattering

    Full text link
    Spin asymmetries of semi-inclusive cross sections for the production of positively and negatively charged hadrons have been measured in deep-inelastic scattering of polarized positrons on polarized hydrogen and 3He targets, in the kinematic range 0.023<x<0.6 and 1 GeV^2<Q^2<10 GeV^2. Polarized quark distributions are extracted as a function of x for up $(u+u_bar) and down (d+d_bar) flavors. The up quark polarization is positive and the down quark polarization is negative in the measured range. The polarization of the sea is compatible with zero. The first moments of the polarized quark distributions are presented. The isospin non-singlet combination Delta_q_3 is consistent with the prediction based on the Bjorken sum rule. The moments of the polarized quark distributions are compared to predictions based on SU(3)_f flavor symmetry and to a prediction from lattice QCD.Comment: 14 pages, 6 figures (eps format), 10 tables in Latex New version contains tables of asymmetries and correlation matri

    Separated spectral functions for the quasifree 12C(e,e′p) reaction

    Get PDF
    A separation of the longitudinal and transverse 12C(e,e′p) cross sections in the quasifree region has been performed in parallel kinematics at Q2 of 0.64 and 1.8 GeV2 for initial proton momentum <80 MeV. The separated transverse and longitudinal spectral functions at Q2=0.64GeV2 show significant differences for missing energy between 25 and 60 MeV indicating a breakdown in the single nucleon knockout picture. The transverse spectral functions exhibit definite momentum transfer dependence
    corecore