14 research outputs found

    Evaluation of Methylotrophic Yeast Ogataea thermomethanolica TBRC 656 as a Heterologous Host for Production of an Animal Vaccine Candidate

    Get PDF
    Multiple yeast strains have been developed into versatile heterologous protein expression platforms. Earlier works showed that Ogataea thermomethanolica TBRC 656 (OT), a thermotolerant methylotrophic yeast, can efficiently produce several industrial enzymes. In this work, we demonstrated the potential of this platform for biopharmaceutical manufacturing. Using a swine vaccine candidate as a model, we showed that OT can be optimized to express and secrete the antigen based on porcine circovirus type 2d capsid protein at a respectable yield. Crucial steps for yield improvement include codon optimization and reduction of OT protease activities. The antigen produced in this system could be purified efficiently and induce robust antibody response in test animals. Improvements in this platform, especially more efficient secretion and reduced extracellular proteases, would extend its potential as a competitive platform for biopharmaceutical industries

    Metabolic Engineering of Saccharomyces cerevisiae for Production of Fragrant Terpenoids from Agarwood and Sandalwood

    No full text
    Sandalwood and agarwood essential oils are rare natural oils comprising fragrant terpenoids that have been used in perfumes and incense for millennia. Increasing demand for these terpenoids, coupled with difficulties in isolating them from natural sources, have led to an interest in finding alternative production platforms. Here, we engineered the budding yeast Saccharomyces cerevisiae to produce fragrant terpenoids from sandalwood and agarwood. Specifically, we constructed strain FPPY005_39850, which overexpresses all eight genes in the mevalonate pathway. Using this engineered strain as the background strain, we screened seven distinct terpene synthases from agarwood, sandalwood, and related plant species for their activities in the context of yeast. Five terpene synthases led to the production of fragrant terpenoids, including α-santalene, α-humulene, δ-guaiene, α-guaiene, and β-eudesmol. To our knowledge, this is the first demonstration of β-eudesmol production in yeast. We further improved the production titers by downregulating ERG9, a key enzyme from a competing pathway, as well as employing enzyme fusions. Our final engineered strains produced fragrant terpenoids at up to 101.7 ± 6.9 mg/L. We envision our work will pave the way for a scalable route to these fragrant terpenoids and further establish S. cerevisiae as a versatile production platform for high-value chemicals

    Engineered Production of Isobutanol from Sugarcane Trash Hydrolysates in Pichia pastoris

    No full text
    Concerns over climate change have led to increased interest in renewable fuels in recent years. Microbial production of advanced fuels from renewable and readily available carbon sources has emerged as an attractive alternative to the traditional production of transportation fuels. Here, we engineered the yeast Pichia pastoris, an industrial powerhouse in heterologous enzyme production, to produce the advanced biofuel isobutanol from sugarcane trash hydrolysates. Our strategy involved overexpressing a heterologous xylose isomerase and the endogenous xylulokinase to enable the yeast to consume both C5 and C6 sugars in biomass. To enable the yeast to produce isobutanol, we then overexpressed the endogenous amino acid biosynthetic pathway and the 2-keto acid degradation pathway. The engineered strains produced isobutanol at a titer of up to 48.2 ± 1.7 mg/L directly from a minimal medium containing sugarcane trash hydrolysates as the sole carbon source. To our knowledge, this is the first demonstration of advanced biofuel production using agricultural waste-derived hydrolysates in the yeast P. pastoris. We envision that our work will pave the way for a scalable route to this advanced biofuel and further establish P. pastoris as a versatile production platform for fuels and high-value chemicals

    MOESM1 of Metabolic engineering of Pichia pastoris for production of isobutanol and isobutyl acetate

    No full text
    Additional file 1. Supplementary information for metabolic engineering of the methylotrophic yeast pichia pastoris for production of isobutanol and isobutyl acetate

    Production of high activity <i>Aspergillus niger</i> BCC4525 β-mannanase in <i>Pichia pastoris</i> and its application for mannooligosaccharides production from biomass hydrolysis

    No full text
    <p>A cDNA encoding β-mannanase was cloned from <i>Aspergillus niger</i> BCC4525 and expressed in <i>Pichia pastoris</i> KM71. The secreted enzyme hydrolyzed locust bean gum substrate with very high activity (1625 U/mL) and a relatively high <i>k</i><sub>cat</sub>/<i>K</i><sub><i>m</i></sub> (461 mg<sup>−1</sup> s<sup>−1</sup> mL). The enzyme is thermophilic and thermostable with an optimal temperature of 70 °C and 40% retention of endo-β-1,4-mannanase activity after preincubation at 70 °C. In addition, the enzyme exhibited broad pH stability with an optimal pH of 5.5. The recombinant enzyme hydrolyzes low-cost biomass, including palm kernel meal (PKM) and copra meal, to produce mannooligosaccharides, which is used as prebiotics to promote the growth of beneficial microflora in animals. An <i>in vitro</i> digestibility test simulating the gastrointestinal tract system of broilers suggested that the recombinant β-mannanase could effectively liberate reducing sugars from PKM-containing diet. These characteristics render this enzyme suitable for utilization as a feed additive to improve animal performance.</p> <p>A recombinant β-mannanase from <i>A. niger</i> BCC4525 exhibits high activity. It produces MOS from low-cost biomass and enhance the release of reducing sugars from diet.</p

    D-Lactic Acid Production from Sugarcane Bagasse by Genetically Engineered Saccharomyces cerevisiae

    No full text
    Lactic acid (LA) is a promising bio-based chemical that has broad applications in food, nutraceutical, and bioplastic industries. However, production of the D-form of LA (D-LA) from fermentative organisms is lacking. In this study, Saccharomyces cerevisiae harboring the D-lactate dehydrogenase (DLDH) gene from Leuconostoc mesenteroides was constructed (CEN.PK2_DLDH). To increase D-LA production, the CRISPR/Cas12a system was used for the deletion of gpd1, gpd2, and adh1 to minimize glycerol and ethanol production. Although an improved D-LA titer was observed for both CEN.PK2_DLDHΔgpd and CEN.PK2_DLDHΔgpdΔadh1, growth impairment was observed. To enhance the D-LA productivity, CEN.PK2_DLDHΔgpd was crossed with the weak acid-tolerant S. cerevisiae BCC39850. The isolated hybrid2 showed a maximum D-LA concentration of 23.41 ± 1.65 g/L, equivalent to the improvement in productivity and yield by 2.2 and 1.5 folds, respectively. The simultaneous saccharification and fermentation using alkaline pretreated sugarcane bagasse by the hybrid2 led to an improved D-LA conversion yield on both the washed solid and whole slurry (0.33 and 0.24 g/g glucan). Our findings show the exploitation of natural yeast diversity and the potential strategy of gene editing combined with conventional breeding on improving the performance of S. cerevisiae for the production of industrially potent products
    corecore