170 research outputs found

    Mantle upwellings above slab graveyards linked to the global geoid lows

    Get PDF
    The global geoid is characterized by a semi-continuous belt of lows that surround the Pacific Ocean, including isolated minima in the Indian Ocean, Ross Sea and northeast Pacific and west Atlantic oceans. These geoid lows have been attributed to Mesozoic subduction. Geodynamic models that include slab graveyards in the lower mantle as inferred from seismic topography or from plate reconstructions correctly predict the general trend of geoid minima. However, these models fail to accurately reproduce localized geoid lows in the Indian Ocean, Ross Sea and northeast Pacific Ocean. Here we show that the geoid lows are correlated with high-velocity anomalies near the base of the mantle and low-velocity anomalies in the mid-to-upper mantle. Our mantle flow models reproduce the geoid minima if the mid-to-upper mantle upwellings are positioned above the inferred locations of ancient subducted slabs. We find that the long-wavelength trough in the geoid is linked to high-density slab graveyards in the lower mantle, whereas upwelling regions in the mantle above 1,000 km depth cause discrete lows within the larger trough. We suggest that this mode of upwelling in the mid-to-upper mantle is caused by buoyant hydrated mantle that was created by processes around and above subducted slabs

    Inferring mantle properties with an evolving dynamic model of the Antarctica-New Zealand region from the Late Cretaceous

    Get PDF
    We show that time-dependent models of mantle upwellings above a cold downwelling in the New Zealand-Antarctica region since 80 Ma can explain anomalous geophysical observations: ~1.0 km of positive residual bathymetry at the Antarctica margin, a large Ross Sea geoid low, 0.5–0.9 km of excess tectonic subsidence of the Campbell Plateau since 80 Ma, and several seismic wave speed anomalies. Model results indicate that the largest mantle upwelling, centered in the Ross Sea, has an average temperature anomaly of 200°C and density anomaly of 0.6%, and it rose from midmantle depths at 80 Ma to a present depth of 400–1000 km. Anomalous Campbell Plateau subsidence requires a smaller hot anomaly evolving within the upper mantle under the region of the reconstructed Late Cretaceous Campbell Plateau. The excess subsidence of the plateau results from northward drift of New Zealand away from the dynamic topography high created by the smaller hot anomaly. To fit present-day geoid and residual topography observations, we require a large lower:upper mantle viscosity ratio of 100:1. We suggest that the distribution of temperature and viscosity is related to long-lived Gondwana subduction that accumulated high-density, high-viscosity lower mantle below a chemically altered upper mantle with anomalously low density and/or high temperature. Time-dependent observations enable constraints on absolute viscosities of 10^(23) Pa s and 10^(21) Pa s for the lower and upper mantle, respectively

    How to create new subduction zones: A global perspective

    Get PDF
    The association of deep-sea trenches—steeply angled, planar zones where earthquakes occur deep into Earth’s interior—and chains, or arcs, of active, explosive volcanoes had been recognized for 90 years prior to the development of plate tectonic theory in the 1960s. Oceanic lithosphere is created at mid-ocean ridge spreading centers and recycled into the mantle at subduction zones, where down-going lithospheric plates dynamically sustain the deep-sea trenches. Study of subduction zone initiation is a challenge because evidence of the processes involved is typically destroyed or buried by later tectonic and crust-forming events. In 2014 and 2017, the International Ocean Discovery Program (IODP) specifically targeted these processes with three back-to-back expeditions to the archetypal Izu-Bonin-Mariana (IBM) intra-oceanic arcs and one expedition to the Tonga-Kermadec (TK) system. Both subduction systems were initiated ~52 million years ago, coincident with a proposed major change of Pacific plate motion. These expeditions explored the tectonism preceding and accompanying subduction initiation and the characteristics of the earliest crust-forming magmatism. Lack of compressive uplift in the overriding plate combined with voluminous basaltic seafloor magmatism in an extensional environment indicates a large component of spontaneous subduction initiation was involved for the IBM. Conversely, a complex range of far-field uplift and depression accompanied the birth of the TK system, indicative of a more distal forcing of subduction initiation. Future scientific ocean drilling is needed to target the three-dimensional aspects of these processes at new converging margins

    The richness dependence of galaxy cluster correlations: Results from a redshift survey of rich APM clusters

    Get PDF
    We analyse the spatial clustering properties of a new catalogue of very rich galaxy clusters selected from the APM Galaxy Survey. These clusters are of comparable richness and space density to Abell Richness Class 1\geq 1 clusters, but selected using an objective algorithm from a catalogue demonstrably free of artificial inhomogeneities. Evaluation of the two-point correlation function ξcc(r)\xi_{cc}(r) for the full sample and for richer subsamples reveals that the correlation amplitude is consistent with that measured for lower richness APM clusters and X-ray selected clusters. We apply a maxmimum likelihood estimator to find the best fitting slope and amplitude of a power law fit to ξcc(r)\xi_{cc}(r), and to estimate the correlation length r0r_{0} (the value of rr at which ξcc(r)\xi_{cc}(r) is equal to unity). For clusters with a mean space density of 1.6\times 10^{-6}\hmpccc (equivalent to the space density of Abell Richness 2\geq 2 clusters), we find r_{0}=21.3^{+11.1}_{-9.3} \hmpc (95% confidence limits). This is consistent with the weak richness dependence of ξcc(r)\xi_{cc}(r) expected in Gaussian models of structure formation. In particular, the amplitude of ξcc(r)\xi_{cc}(r) at all richnesses matches that of ξcc(r)\xi_{cc}(r) for clusters selected in N-Body simulations of a low density Cold Dark Matter model.Comment: MNRAS submitted, 9 pages, LaTeX (mn), 7 figures. Also available at http://www-astronomy.mps.ohio-state.edu/~racc

    How to Create New Subduction Zones: A Global Perspective

    Get PDF
    The association of deep-sea trenches—steeply angled, planar zones where earthquakes occur deep into Earth’s interior—and chains, or arcs, of active, explosive volcanoes had been recognized for 90 years prior to the development of plate tectonic theory in the 1960s. Oceanic lithosphere is created at mid-ocean ridge spreading centers and recycled into the mantle at subduction zones, where down-going lithospheric plates dynamically sustain the deep-sea trenches. Study of subduction zone initiation is a challenge because evidence of the processes involved is typically destroyed or buried by later tectonic and crust-forming events. In 2014 and 2017, the International Ocean Discovery Program (IODP) specifically targeted these processes with three back-to-back expeditions to the archetypal Izu-Bonin-Mariana (IBM) intra-oceanic arcs and one expedition to the Tonga-Kermadec (TK) system. Both subduction systems were initiated ~52 million years ago, coincident with a proposed major change of Pacific plate motion. These expeditions explored the tectonism preceding and accompanying subduction initiation and the characteristics of the earliest crust-forming magmatism. Lack of compressive uplift in the overriding plate combined with voluminous basaltic seafloor magmatism in an extensional environment indicates a large component of spontaneous subduction initiation was involved for the IBM. Conversely, a complex range of far-field uplift and depression accompanied the birth of the TK system, indicative of a more distal forcing of subduction initiation. Future scientific ocean drilling is needed to target the three-dimensional aspects of these processes at new converging margins

    Late Holocene Rupture History of the Alpine Fault in South Westland, New Zealand

    Get PDF
    Abstract Strata and fault relationships revealed in five trenches excavated across the recent trace of the Alpine fault at the Haast, Okuru, and Turnbull Rivers, South Westland, New Zealand, record the three most recent surface-faulting events. Using back-stripping techniques to remove the three faulting events and the sedimentary units associated with the faulting restores the cross-sections to gravel-bed floodplains at the Haast and Okuru Rivers, at about A.D. 750. Horizontal and vertical offsets of stream channels and terrace risers reveal characteristic displacements of about 8–9 m dextral and up to 1 m vertical per event. Cumulative dextral displacement is 25 ± 3 m in the past three events. The most recent surface-rupture event was probably in A.D. 1717, and the next prior events were about A.D. 1230 ± 50 and about A.D.750 ± 50. The timing of these events is consistent with past large-great earth- quakes on the southern section of the Alpine fault inferred from off-fault data, but there are fewer events identified in trenches. Our three-event dataset indicates the aver- age surface-rupture recurrence interval for the South Westland section of the fault is about 480 years, much longer than the current elapsed time of 295 years. Therefore, the Alpine fault in South Westland may not be close to rupture as is often speculated

    Strike-slip Enables Subduction Initiation beneath a Failed Rift: New Seismic Constraints from Puysegur Margin, New Zealand

    Get PDF
    Subduction initiation often takes advantage of previously weakened lithosphere and may preferentially nucleate along pre-existing plate boundaries. To evaluate how past tectonic regimes and inherited lithospheric structure might lead to self-sustaining subduction, we present an analysis of the Puysegur Trench, a young subduction zone with a rapidly evolving tectonic history. The Puysegur margin, south of New Zealand, has experienced a transformation from rifting to seafloor spreading to strike-slip, and most recently to incipient subduction, all in the last ~45 million years. Here we present deep-penetrating multichannel reflection (MCS) and ocean-bottom seismometer (OBS) tomographic images to document crustal structures along the margin. Our images reveal that the overriding Pacific Plate beneath the Solander Basin contains stretched continental crust with magmatic intrusions, which formed from Eocene-Oligocene rifting between the Campbell and Challenger plateaus. Rifting was more advanced to the south, yet never proceeded to breakup and seafloor spreading in the Solander Basin as previously thought. Subsequent strike-slip deformation translated continental crust northward causing an oblique collisional zone, with trailing ~10 Myr old oceanic lithosphere. Incipient subduction transpired as oceanic lithosphere from the south forcibly underthrust the continent-collision zone. We suggest that subduction initiation at the Puysegur Trench was assisted by inherited buoyancy contrasts and structural weaknesses that were imprinted into the lithosphere during earlier phases of continental rifting and strike-slip along the plate boundary. The Puysegur margin demonstrates that forced nucleation along a strike-slip boundary is a viable subduction initiation scenario and should be considered throughout Earth's history

    Strike-Slip Enables Subduction Initiation Beneath a Failed Rift: New Seismic Constraints From Puysegur Margin, New Zealand

    Get PDF
    Subduction initiation often takes advantage of previously weakened lithosphere and may preferentially nucleate along pre‐existing plate boundaries. To evaluate how past tectonic regimes and inherited lithospheric structure might lead to self‐sustaining subduction, we present an analysis of the Puysegur Trench, a young subduction zone with a rapidly evolving tectonic history. The Puysegur margin, south of New Zealand, has experienced a transformation from rifting to seafloor spreading to strike‐slip, and most recently to incipient subduction, all in the last ∼45 million years. Here we present deep‐penetrating multichannel reflection and ocean‐bottom seismometer tomographic images to document crustal structures along the margin. Our images reveal that the overriding Pacific Plate beneath the Solander Basin contains stretched continental crust with magmatic intrusions, which formed from Eocene‐Oligocene rifting between the Campbell and Challenger plateaus. Rifting was more advanced to the south, yet never proceeded to breakup and seafloor spreading in the Solander Basin as previously thought. Subsequent strike‐slip deformation translated continental crust northward causing an oblique collisional zone, with trailing ∼10 Myr old oceanic lithosphere. Incipient subduction transpired as oceanic lithosphere from the south forcibly underthrust the continent‐collision zone. We suggest that subduction initiation at the Puysegur Trench was assisted by inherited buoyancy contrasts and structural weaknesses that were imprinted into the lithosphere during earlier phases of continental rifting and strike‐slip along the plate boundary. The Puysegur margin demonstrates that forced nucleation along a strike‐slip boundary is a viable subduction initiation scenario and should be considered throughout Earth's history

    How to Create New Subduction Zones: A Global Perspective

    Get PDF
    The association of deep-sea trenches—steeply angled, planar zones where earthquakes occur deep into Earth’s interior—and chains, or arcs, of active, explosive volcanoes had been recognized for 90 years prior to the development of plate tectonic theory in the 1960s. Oceanic lithosphere is created at mid-ocean ridge spreading centers and recycled into the mantle at subduction zones, where down-going lithospheric plates dynamically sustain the deep-sea trenches. Study of subduction zone initiation is a challenge because evidence of the processes involved is typically destroyed or buried by later tectonic and crust-forming events. In 2014 and 2017, the International Ocean Discovery Program (IODP) specifically targeted these processes with three back-to-back expeditions to the archetypal Izu-Bonin-Mariana (IBM) intra-oceanic arcs and one expedition to the Tonga-Kermadec (TK) system. Both subduction systems were initiated ~52 million years ago, coincident with a proposed major change of Pacific plate motion. These expeditions explored the tectonism preceding and accompanying subduction initiation and the characteristics of the earliest crust-forming magmatism. Lack of compressive uplift in the overriding plate combined with voluminous basaltic seafloor magmatism in an extensional environment indicates a large component of spontaneous subduction initiation was involved for the IBM. Conversely, a complex range of far-field uplift and depression accompanied the birth of the TK system, indicative of a more distal forcing of subduction initiation. Future scientific ocean drilling is needed to target the three-dimensional aspects of these processes at new converging margins
    corecore