1,708 research outputs found

    Dental Treatment Needs in Two Samples of Scottish Fourteen-Year-Old Children: An Epidemiological Assessment of Treatment Needs as an Indication of the Effectiveness of the Current Dental Services, with Recommendations for the Improvement of These Services in the Future

    Get PDF
    It is well known from epidemiologists' reports and from Government statistics that the state of children's dental health is poor. What is not known is the numbers of children who require various forms of treatment, and whether or not the available dental manpower will ever cope with the situation. To elicit this information is the general purpose of this investigation, which is the first study to examine treatment needs in such detail. The study is based on the results of a dental epidemiological survey carried out during the period 1968-1971. The specific aims of the study are as follows: 1. To assess the dental treatment needs of fourteen-year-old Scottish children. 2. To discover possible differences between the dental status and treatment needs of children living in an Urban environment, and those living in a Rural environment. 3. To discover possible effects of social class, and of dental attendance habits on dental status and treatment needs. 4. To study the relationship between treatment needs and toothbrushing, snack-eating, and spending on confectionery, and between treatment needs and caries experience, oral cleanliness and periodontal disease. 5. To estimate the ability of the currently available dental manpower to control the level of dental disease recorded in this survey. 6. To make recommendations for the control of dental disease in children in the immediate future. (Abstract shortened by ProQuest.)

    The East Greenland Coastal Current : its structure variability, and large-scale impact

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2008The subtidal circulation of the southeast Greenland shelf is described using a set of highresolution hydrographic and velocity transects occupied in summer 2004. The main feature present is the East Greenland Coastal Current (EGCC), a low-salinity, highvelocity jet with a wedge-shaped hydrographic structure characteristic of other surface buoyancy-driven currents. The EGCC was observed along the entire Greenland shelf south of Denmark Strait, while the transect north of the strait showed only a weak shelf flow. This observation, combined with evidence from chemical tracer measurements that imply the EGCC contains a significant Pacific Water signal, suggests that the EGCC is an inner branch of the polar-origin East Greenland Current (EGC). A set of idealized laboratory experiments on the interaction of a buoyant current with a submarine canyon also supported this hypothesis, showing that for the observed range of oceanic parameters, a buoyant current such as the EGC could exhibit both flow across the canyon mouth or into the canyon itself, setting the stage for EGCC formation. Repeat sections occupied at Cape Farewell between 1997 and 2004 show that the alongshelf wind stress can also have a strong influence on the structure and strength of the EGCC and EGC on timescales of 2-3 days. Accounting for the wind-induced effects, the volume transport of the combined EGC/EGCC system is found to be roughly constant (~2 Sv) over the study domain, from 68°N to Cape Farewell near 60°N. The corresponding freshwater transport increases by roughly 60% over this distance (59 to 96 mSv, referenced to a salinity of 34.8). This trend is explained by constructing a simple freshwater budget of the EGCC/EGC system that accounts for meltwater runoff, melting sea-ice and icebergs, and net precipitation minus evaporation. Variability on interannual timescales is examined by calculating the Pacific Water content in the EGC/EGCC from 1984-2004 in the vicinity of Denmark Strait. The PW content is found to correlate significantly with the Arctic Oscillation index, lagged by 9 years, suggesting that the Arctic Ocean circulation patterns bring varying amounts of Pacific Water to the North Atlantic via the EGC/EGCC.Funding for the cruise and analysis was provided by National Science Foundation grant OCE-0450658, which along with NSF grant OCE- 0095427 provided funds for my tuition and stipend as well

    Resolving the electron temperature discrepancies in HII Regions and Planetary Nebulae: kappa-distributed electrons

    Get PDF
    The measurement of electron temperatures and metallicities in H ii regions and Planetary Nebulae (PNe) has-for several decades-presented a problem: results obtained using different techniques disagree. What it worse, they disagree consistently. There have been numerous attempts to explain these discrepancies, but none has provided a satisfactory solution to the problem. In this paper, we explore the possibility that electrons in H ii regions and PNe depart from a Maxwell-Boltzmann equilibrium energy distribution. We adopt a "kappa-distribution" for the electron energies. Such distributions are widely found in Solar System plasmas, where they can be directly measured. This simple assumption is able to explain the temperature and metallicity discrepancies in H ii regions and PNe arising from the different measurement techniques. We find that the energy distribution does not need to depart dramatically from an equilibrium distribution. From an examination of data from Hii regions and PNe it appears that kappa ~ 10 is sufficient to encompass nearly all objects. We argue that the kappa-distribution offers an important new insight into the physics of gaseous nebulae, both in the Milky Way and elsewhere, and one that promises significantly more accurate estimates of temperature and metallicity in these regions.Comment: 16 pages, 11 figures, 2 tables, published in Ap

    The Incidental-to-Air Exemption: Conflict and Confusion

    Get PDF

    The Effects of Fish Trap Mesh Size on Reef Fish Catch off Southeastern Florida

    Get PDF
    Catch and mesh selectivity of wire-meshed fish traps were tested for eleven different mesh sizes ranging from 13 X 13 mm (0.5 x 0.5") to 76 x 152 mm (3 X 6"). A total of 1,810 fish (757 kg) representing 85 species and 28 families were captured during 330 trap hauls off southeastern Florida from December 1986 to July 1988. Mesh size significantly affected catches. The 1.5" hexagonal mesh caught the most fish by number, weight, and value. Catches tended to decline as meshes got smaller or larger. Individual fish size increased with larger meshes. Laboratory mesh retention experiments showed relationships between mesh shape and size and individual retention for snapper (Lutjanidae), grouper (Serranidae), jack (Carangidae), porgy (Sparidae), and surgeonfish (Acanthuridae). These relationships may be used to predict the effect of mesh sizes on catch rates. Because mesh size and shape greatly influenced catchability, regulating mesh size may provide a useful basis for managing the commercial trap fishery

    Estuarine exchange flow variability in a seasonal, segmented estuary

    Get PDF
    Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(3),(2020): 595-613, doi:10.1175/JPO-D-19-0108.1.Small estuaries in Mediterranean climates display pronounced salinity variability at seasonal and event time scales. Here, we use a hydrodynamic model of the Coos Estuary, Oregon, to examine the seasonal variability of the salinity dynamics and estuarine exchange flow. The exchange flow is primarily driven by tidal processes, varying with the spring–neap cycle rather than discharge or the salinity gradient. The salinity distribution is rarely in equilibrium with discharge conditions because during the wet season the response time scale is longer than discharge events, while during low flow it is longer than the entire dry season. Consequently, the salt field is rarely fully adjusted to the forcing and common power-law relations between the salinity intrusion and discharge do not apply. Further complicating the salinity dynamics is the estuarine geometry that consists of multiple branching channel segments with distinct freshwater sources. These channel segments act as subestuaries that import both higher- and lower-salinity water and export intermediate salinities. Throughout the estuary, tidal dispersion scales with tidal velocity squared, and likely includes jet–sink flow at the mouth, lateral shear dispersion, and tidal trapping in branching channel segments inside the estuary. While the estuarine inflow is strongly correlated with tidal amplitude, the outflow, stratification, and total mixing in the estuary are dependent on the seasonal variation in river discharge, which is similar to estuaries that are dominated by subtidal exchange flow.We thank two anonymous reviewers for constructive comments, the staff of the South Slough National Estuarine Research Reserve for providing time series data, and Parker MacCready for sharing LiveOcean boundary conditions. This work was partially sponsored by the National Estuarine Research Reserve System Science Collaborative, which supports collaborative research that addresses coastal management problems important to the reserves. The Science Collaborative is funded by the National Oceanic and Atmospheric Administration and managed by the University of Michigan Water Center (NAI4NOS4190145). Computations were performed on the University of Oregon high performance computer Talapas.2020-08-2
    corecore