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Multi-scale processes in metapopulations: contributions of stage
structure, rescue effect, and correlated extinctions
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Abstract. Metapopulations function and persist through a combination of processes
acting at a variety of spatial scales. Although the contributions of stage structure, spatially
correlated processes, and the rescue effect to metapopulation dynamics have been investigated
in isolation, there is no empirical demonstration of all of these processes shaping dynamics in a
single system. Dispersal and settlement differ according to the life stage involved; therefore,
stage-specific population size may outperform total population size when predicting
colonization–extinction dynamics. Synchrony in patch dynamics can lead to accelerated
metapopulation extinction, although empirical evidence of the interplay between correlated
colonization events and correlated extinctions is lacking. Likewise, few empirical examples
exist that provide compelling evidence of migration acting to reduce extinction risk (the rescue
effect). We parameterized a hierarchy of metapopulation models to investigate these
predictions using a seven-year study of a naturally occurring water vole (Arvicola amphibius)
metapopulation. Specifically, we demonstrated the importance of local stage structure in
predicting both colonization and extinction events using juvenile and adult population sizes,
respectively. Using a novel approach for quantifying correlation in extinction events, we
compared the scale of synchrony in colonization and extinction. Strikingly, the scale of
dispersal acting to synchronize colonization was an order of magnitude larger than that of
correlated extinctions (halving distance of the effect: 12.40 km and 0.89 km, respectively).
Additionally, we found compelling evidence for the existence of a nontrivial rescue effect. Here
we provide a novel empirical demonstration of a variety of metapopulation processes
operating at multiple spatial scales, further emphasizing the need to consider stage structure
and local synchrony in the dynamics of spatially dependent, stage-structured (meta)
populations.

Key words: Arvicola amphibius; Bayesian models; colonization; dispersal; metapopulation; rescue
effect; scale; spatially correlated extinction; stage structure; stochastic patch occupancy model, SPOM;
water vole.

INTRODUCTION

Considering the effects of spatial structure and habitat

characteristics has improved the way we understand the

dynamics of fragmented populations (Hanski and

Gaggiotti 2004). An important generality emerging

from spatially realistic metapopulation theory is the

area–isolation paradigm, which states that colonization–

extinction dynamics can be reasonably described using

patch size and the proximity to extant populations

(Hanski 1994, 1998, Moilanen 1999, Ovaskainen and

Hanski 2004). Spatially realistic stochastic patch occu-

pancy models, SPOM (Hanski 1994, Day and Possing-

ham 1995, Moilanen 1999, Hanski and Ovaskainen

2000, Ovaskainen and Hanski 2004) are a class of

models that incorporate this simple yet realistic descrip-

tion of the landscape, and are well suited to investigate

the area–isolation relationship (Etienne et al. 2004). This

paradigm is well understood and is supported in a range

of natural settings (e.g., see review by Pellet et al. 2007).

Theoretical, experimental, and to a lesser extent

empirical, studies, however, have investigated a range

of additional processes that, in isolation, can shape

metapopulation dynamics (e.g., local dynamics, corre-

lated processes, and the rescue effect). An enduring

challenge is to determine whether multi-scale processes

operate in real metapopulations.

Connectivity is a fundamental concept in metapopu-

lation ecology that describes the rate of migration to, or

from, a local population or habitat patch (Moilanen and

Nieminen 2002, Prugh 2009). Measures of connectivity

that consider distance to all extant populations,

weighted by their size (area), outperform nearest

neighbor or buffer distances when predicting coloniza-

tion (Moilanen and Nieminen 2002). Moreover, the use

of patch size reflects an assumption that population size

is proportional to patch area (Hanski 1994, Ovaskainen

and Hanski 2004) and that larger patches send out more

dispersers. This relationship extends also to extinction,
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such that smaller patches are more likely to go extinct

than larger ones (Hanski 1994, Ovaskainen and Hanski

2004).

The use of patch size allows for convenient simplify-

ing assumptions (Hanski 1994, Ovaskainen 2002,

Moilanen 2004, Ovaskainen and Hanski 2004). Howev-

er, empirical evidence indicates that extinction events are

predicted more effectively by (time-varying) population

size than by time-invariant patch size, affirming the role

of demography in the extinction process (Pellet et al.

2007). Direct comparisons between neighborhood patch

size and population size to measure connectivity,

however, are less common. Density-dependent dispersal

(Matthysen 2005), Allee effects (Gyllenberg et al. 1999)

or conspecific attraction and avoidance (Lehmann and

Perrin 2003) suggest that incorporating population size

and structure may be more informative than patch size

when used to explain colonization–extinction dynamics.

Ozgul et al. (2009) provide a compelling empirical

demonstration of the differential effects of stage

structure on long- and short-term metapopulation

dynamics (but see also Crone et al. 2001, Clinchy et al.

2002, Baguette and Schtickzelle 2003, Schooley and

Wiens 2005). Here we note that, although it constrains

the predictive capabilities of SPOMs to one-step-ahead

predictions of occupancy (Ovaskainen 2002), investigat-

ing the roles of population size and structure is an

important step in understanding determinants of meta-

population functioning (Hanski and Gaggiotti 2004).

In reality, the dynamics of spatially structured

populations are subject to a range of potentially

synchronizing processes operating at a variety of spatial

scales (Holt 1993, Heino et al. 1997, Bjørnstad et al.

1999, Koenig 1999, Liebhold et al. 2004). Synchrony of

local populations can arise through regional stochastic-

ity (e.g., climatic/weather conditions, predation, disease,

and habitat loss/change) or the metapopulation dynam-

ics themselves, and an understanding of the scale of

correlated dynamics can prove useful when inferring the

underlying biological processes involved (Hanski 1991,

Heino et al. 1997, Moilanen 1999, Clinchy et al. 2002,

Ovaskainen 2002, Ovaskainen and Hanski 2003, Kalli-

manis et al. 2005). Because dispersal introduces spatial

synchrony between populations, colonization is spatially

correlated (Bjørnstad et al. 1999, Koenig 1999, Liebhold

et al. 2004) and the scale of the correlation is determined

by the (estimated) dispersal kernel (Hanski 1994, 1997).

Spatially correlated extinctions can reduce the time to

metapopulation extinction by limiting the capacity and

the effective number of patches in the system (Moilanen

1999, Ovaskainen 2002, Ovaskainen and Hanski 2003,

Kallimanis et al. 2005). Metapopulations can be

buffered from such detrimental effects if dispersal

distances are relatively large, and can therefore persist

despite spatially correlated extinctions (Heino et al.

1997, Ovaskainen et al. 2002, Lambin et al. 2004).

Measuring the scale of spatial correlation in real

metapopulations remains an important area of research.

Dispersal-induced synchrony can also result in pop-

ulations in dense neighborhoods having reduced prob-

abilities of extinction, known as a rescue effect (Brown

and Kodric-Brown 1977). When a rescue effect is
present, a degree of spatial correlation is introduced

into population persistence. Although it is mathemati-

cally interesting, empirical evidence for the rescue effect

is rare and not uncontroversial (Moilanen et al. 1998,
Etienne 2000, Clinchy et al. 2002).

We present a retrospective analysis of seven years of

patch occupancy data from a metapopulation of water

voles, Arvicola amphibius, in which we parameterize and

statistically fit a hierarchy of SPOMs to patch occupan-
cy histories and their associated population size. We

directly investigate the presence (hitherto lacking in the

empirical literature) of multiple processes operating at

different spatial scales in a single, naturally occurring

metapopulation. First, we relax the assumption that
patch size is a true reflection of the effective population

size. Using within-patch population size and structure,

we investigate the relative contributions of different life

stages to colonization–extinction dynamics. We then
extend the concept of connectivity, traditionally used to

characterize the scale of dispersal, to estimate the scale

of spatially correlated extinction. We can therefore

compare the spatial scale of both processes and assess

their effect on metapopulation functioning. Finally, our
approach, applied to a natural metapopulation, allows

us to provide rare and compelling empirical support for

the existence and influence of a rescue effect.

METHODS

Assynt water vole data

The study area is a heather-dominated upland

landscape ;140 km2 in size and is located in the Assynt
area, northwestern Scotland (see also Appendix B). In

Assynt, water voles can grow up to 300 g, live no more

than two years, and occupy discrete vegetated stretches

of riparian habitat (patches, hereafter) that are embed-

ded within the unsuitable heather matrix. Water vole
patches are, on average, 0.847 km long (range: 0.067–

3.007 km) and make up around 11% of the 860-km

waterway network in the study area. In the year of birth,

water voles disperse from their natal patch and a small
fraction may mature sexually. In their second year,

females hold a territory, produce 1–3 litters, and most

adults (.99%) are never seen again. We therefore

consider this water vole metapopulation to have

nonoverlapping breeding generations; that is, most
adults perish before their offspring reproduce. In 1999,

the study area was comprehensively surveyed and all

suitable water vole habitat patches were mapped. In this

analysis, we consider data from 69 suitable water vole
habitat patches collected during the breeding period

(July and August) of each year from 1999 to 2005. The

data consist of (1) patch occupancy states for each patch

in each year and, (2) population size and structure of

each of the occupied patches in each year.
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To generate patch occupancy histories, each of the 69

sites was visited only once in each year and intensively

surveyed for the presence or absence of fresh water vole

signs, mainly latrines (piles of feces used for territory

marking). When signs were detected, patches were

scored as occupied (1); otherwise they were scored as

empty (0), providing what is commonly referred to as

snapshot data. At all patches that were observed as

being occupied, trapping was carried out over 3–5

consecutive days and, when captured, water voles were

marked, aged ( juvenile or adult), and sexed (for more

detail, see Aars et al. 2001). The median number of

water voles in a colony was 2 adults (range: 1–16) and 3

juveniles (range: 1–22). Using closed-capture models

(program MARK; White and Burnham 1999), the

estimated probability of a water vole being captured at

least once over four days of trapping was high

(cumulative probability that a vole is caught after 4

days of trapping: 0.94 [95% bootstrapped confidence

interval 0.92–0.95] for adults and 0.94 [95% boot-

strapped confidence interval 0.93–0.96] for juveniles).

The data did not allow for patch-within-year-level

estimates of trappability, although pooling across

patches within years showed no significant between-year

differences in the probability that an individual is

captured at least once (for further details on estimating

trappability, see Appendix A). Therefore, given that

colony sizes were small and that the probability of being

captured over 4 days was very high, we considered the

live-trapping data to be a representative estimate of the

true local population size and structure.

The statistical model

A SPOM describes the transitions of n discrete habitat

patches between two occupancy states: occupied (P¼ 1)

and empty (P¼ 0). It is defined as a first-order Markov

chain with 2n possible states in which the metapopula-

tion state at time t þ 1 depends on the state at time t

(reviewed and discussed in Etienne et al. 2004, Moilanen

2004, Ovaskainen and Hanski 2004). Patch transition

probabilities are modeled using two submodels that

describe the processes of colonization (C ) and extinction

(E). The colonization probability of an empty patch in a

given year is assumed to be caused by immigrating

individuals and is modeled as an asymptotically

increasing function of spatial connectivity to extant

patches in the previous year: Ci,t¼1� exp(�Si,t) (Hanski

1997, Moilanen 2004). Connectivity, Si,t, is therefore the

component that defines colonization. Connectivity

describes the distance-dependent influence of all poten-

tial neighboring source populations via a negative

exponential dispersal kernel (Hanski 1994, Moilanen

and Nieminen 2002):

Si;t ¼ c
X

j 6¼i

AjPj;t�1 expð�adi; jÞ: ð1Þ

Here, Pj,t�1 is the occupancy state of the jth neighboring

site at time t� 1; Aj is the corresponding time-invariant

patch size; and di,j is the Euclidean distance (here, in

kilometers) between patch i and j. The term exp(�adi, j)
describes the dispersal kernel with the scaling parameter

a, which can be related to the halving distance of

colonization pressure from neighboring extant patches

by log(2)/a. Parameter c is the population-level per

capita effective dispersal rate.
The probability of a population going extinct is

typically defined as a decreasing function of the patch

size. Here the extinction probability is defined as

logit(Ei,t) ¼ b0 þ b1Ai, where Ai is the time invariant

patch size, b0 is the intercept, and b1 is the slope that

relates extinction probability to patch size (or popula-

tion size). A rescue effect can be incorporated into the

SPOM framework by adjusting the extinction probabil-

ity (to E*
i;t) to allow for a decreasing influence of

migration on extinction probabilities: E*
i;t ¼ (1 – Ci,t)Ei,t

(Moilanen 2004).

A major benefit of using SPOMs is that they provide a

flexible framework within which a range of biological

hypotheses can be tested using competing functional

relationships to characterize the colonization and

extinction processes (Hanski and Gaggiotti 2004). It is

also important to note that, although a suite of modern

tools exists to model site occupancy dynamics, these

require multiple within-season site visits resembling a

robust design (occupancy models; MacKenzie et al.

2003). The SPOM framework is therefore more suited to

answer interesting questions about factors influencing

colonization–extinction dynamics in situations where

only single-visit, snapshot data are available; as is the

case in this study.

Stage structure and correlated extinctions:

alternative parameterizations

First, we relaxed the assumption that patch size is a

true reflection of the effective population size and

investigated whether within-patch population size and

structure may be a better predictor of colonization–

extinction dynamics than patch size. To do this we

considered three alternative population sizes as covar-

iates and substitutes for patch size: juvenile only, adult

only, and total population (collectively, P*
i;t, hereafter).

Stage structure effects on colonization were investigated

by substituting the patch size and occupancy state term,

AjPj,t�1, in connectivity (Eq. 1) with the number of

individuals of a given stage present in time t� 1, P*
j;t�1.

In the same way, the effects of stage structure on

extinction were investigated by substituting Ai in the

extinction term with P*
i;t.

Using connectivity to capture spatial structure in

colonization is common in studies of metapopulation

dynamics, but empirical evidence of spatially correlated

extinction is less common, as is the assessment of how

synchrony in both processes drives metapopulation

dynamics in nature. To account for spatially correlated

extinctions, we extended the extinction function to

include a connectivity variable, Se
i;t, similar to that in
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Eq. 1. The important distinction is that extinction

connectivity describes the distance-dependent influence

of all other extinct (1 – Pj,t) populations:

Se
i;t ¼

X

j 6¼i

ð1� Pj;tÞP*
j;t�1 expð�aedi; jÞ: ð2Þ

Here, population size P*
j;t�1 represents the magnitude of

an extinction event (1 – Pj,t); i.e., larger populations

going extinct have a greater influence on extinction of

the focal population. The scale parameter ae defines the
correlated extinction kernel, which can be related to

halving distance of the extinction pressure from extinct

populations by log(2)/ae; di, j is inter-patch distance. This

novel approach allows the spatial scale of correlated

extinction to be estimated and neighborhoods of

elevated extinction risk to be identified. Extinction thus

becomes a function of both local population size and

connectivity to extinct colonies: logit(Ei,t)¼ b0þ b1P*
i;t�1

þ b2Se
i;t, where b2 relates the probability of extinction to

the connectivity to nearby extinction events.

We specified a hierarchy of SPOMs as follows: (1)

with and without the extinction connectivity term, (2)

with and without a rescue effect, and (3) using all

combinations of stages in both colonization and

extinction (36 candidate models; Table 1). We adopted

a Bayesian approach using uninformative priors on the

linear predictor scale within a biologically meaningful

range (Table 2). Model discrimination was based on

differences in the deviance information criteria, DDIC.

Using 25 000 random draws from the marginal posterior

probability distributions for all parameters, we calcu-

lated the probability that a patch was occupied as

predicted under the proposed model (Ci,t if empty at

time t� 1, and 1� Ei,t [1�Ci,t] if occupied at time t� 1).

These probabilities were used to assess model fit by

comparing the predicted number of colonization and

extinction events per year to the observed data. Using R

(R Development Core Team 2011) and R2OpenBugs

(Sturtz et al. 2005), models were fitted using OpenBUGS

(Lunn et al. 2009). OpenBUGS code is provided in the

Supplement. Parameter estimates are presented in the

text as posterior modes with 95% credible intervals (95%
CI).

RESULTS

Patch state transitions are shown Fig. 1. On average,

the annual patch occupancy of the 69 patches was 42%
(range 28–58 patches). The number of extinction events

per year (median 13.5, range 6–24) and colonization

events per year (median 11, range 5–27) were similar,

suggesting that recolonization compensated for local

extinctions; i.e., the metapopulation was in apparent

equilibrium. On average, 39% (27 per year) of patches

experienced turnovers (range: 22–51 per year). Median

adult colony size was 2 voles (range 1–16) but 41% of

colonies consisted of more than a single matriline.

Juvenile dispersal was the best predictor of coloniza-

tion events, whereas extinction was spatially correlated

and was best explained using adult population size and

including a rescue effect (Table 1). Colonization

probabilities increased with proximity to extant patches

and juveniles provided the best measure of connectivity

(Fig. 2a, b). The scale parameter a was 0.0559 (95% CI

0.0166–0.133), indicating a halving of per patch

colonization pressure every 12.402 km (95% CI 5.210–

TABLE 1. DIC (deviance information criteria) values used to compare alternative parameterizations of a SPOM (stochastic patch
occupancy model) for colonization and extinction by life stage.

Colonization Extinction

No SCE SCE

DDICNo rescue effect Rescue effect No rescue effect Rescue effect

Adult Adult 505.21 505.76 502.47 498.91 4.65
Adult Juvenile 524.09 518.36 518.38 510.44 16.18
Adult Total 516.10 513.75 511.49 506.18 11.92
Juvenile Adult 502.55 498.00 499.00 494.26� 0.00
Juvenile Juvenile 520.88 516.01 515.77 510.58 16.32
Juvenile Total 513.39 509.41 507.25 502.11 7.85
Total Adult 504.46 503.84 500.85 496.87 2.61
Total Juvenile 522.55 518.57 517.88 510.79 16.53
Total Total 514.95 512.04� 510.42 505.75 11.49

Notes: Candidate models included all combinations of stage-structured submodels (colonization and extinction), with and
without a rescue effect, and with (SCE) and without (No SCE) a spatially correlated extinction term. Values for DDIC are based on
a model with SCE and the inclusion of a rescue effect, as per the best-supported model, and compare the fit of stage-structured
models.

� The best-supported model (Mbest in the text).
� The same model as the one designated by �, but with no stage structure and no SCE term (Mbase in the text).

TABLE 2. Posterior modal values (with Bayesian 95% credible
intervals) for parameter estimates from the best-supported
parameterization of the SPOM; the priors used for all models
are also given.

Parameter Posterior mode (95% CI) Prior

ae 0.78 (0.31 to 4.22) uniform(0.02, 4.5)
a 0.056 (0.0166 to 0.133) uniform(0.0001, 100)
c 0.37 (0.28 to 0.45) uniform(0, 100)
b0 1.62 (0.39 to 3.40) uniform(�100, 100)
b1 �0.75 (�1.48 to �0.41) uniform(�100, 100)
b2 1.39 (0.48 to 4.99) uniform(�100, 100)

Note: All beta parameters are logistic regression parameters
and are reported untransformed.
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41.857 km). Connectivity was high; even the most

distant patches (maximum inter-patch distance 28 km)

contributed to the colonization probability of a focal

patch (Fig. 2a). Estimated per juvenile immigration rate,

c, was 0.37 (95% CI 0.28–0.46). We also identified

spatial structure in extinction risk such that extinction

probabilities increased with proximity to extinct neigh-

bors. Relative to large-scale connectivity (a ¼ 0.0559 or

12.402 km), the spatial scale of correlated extinctions

was considerably smaller (ae ¼ 0.78 [95% CI 0.31–4.22]

or 0.89 km [95% CI 0.16–2.21 km]). Extinction pressure

on a focal patch decreased with increasing distance from

newly extinct colonies (Fig. 2c) and that pressure halved

every 0.89 km. The differences in spatial scales in

dispersal/colonization (Fig. 2a; dashed line) and corre-

lated extinctions (Fig. 2a, solid line) show two meta-

population processes operating at very different scales.

Extinction regression coefficients on the linear pre-

dictor scale were b0¼ 1.62 (95% CI 0.39–3.41) and b1¼
�0.75/adult (95% CI �1.48 to �0.42), indicating that

extinction probabilities reduced with increasing numbers

of established adults in a patch in the previous year (Fig.

2d). Direct comparisons of models with vs. without a

rescue effect show that patch occupancy dynamics were

best predicted by models that include the rescue effect

(Table 1). Fig. 2c shows that, under typical conditions

(median adult population size of two voles and mean

colonization probability of 0.28), removing such a rescue

effect acts to inflate the predicted extinction probability

(solid vs. dash-dotted line).

FIG. 1. Patch transition maps showing the transition states conditional on the previous year. Each symbol represents a discrete
patch. Red squares denote extinction events (1! 0), gray squares denote patches that remained empty (0! 0), blue circles denote
patches that were newly colonized (0 ! 1), and gray circles denote patches that remained occupied (1 ! 1). Circle size is
proportional to colony size, and squares have a colony size of 0. The distance scale is the same in all panels.
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Our model predicts extinction events better than

colonization events. In all but one year, the number of

predicted extinctions falls within the 95% credible

intervals of our predictions, whereas this is only the

case for two of the six years for colonization (Fig. 3a).

This result suggests that there is some important biology

missing from the model that might explain the

nonsystematic bias in predicted colonization among

years. As a point of reference, the model just described,

Mbest, can be compared to the same model ignoring

stage structure in colonization and extinction and

excluding the extinction connectivity term: Mbase. We

used the percentage of patches correctly classified, PCC

(Freeman and Moisen 2008), to compare the ability of

both models to predict individual patch occupancy

states. Correct classification is achieved when the

predicted occupancy probability under the proposed

model is .0.5 for patches observed as being occupied

FIG. 2. Posterior modal parameter values are used for relationships in all panels. (a) Comparison of the scales of colonization
and extinction using the estimated dispersal kernel (dashed line, scale parameter a, and N¼ 2) and the correlated extinction kernel
(solid line, scale parameter ae, and N ¼ 2); shaded areas represent uncertainty in scale parameters via the 95% Bayesian credible
intervals (CIs). (b) Colonization probability is an increasing function of proximity to juveniles (measured as connectivity, S ), which
is deterministic; hence there is no uncertainty around the line (Ci,t¼ 1 – exp[�Si,t]). (c) The relationship, under the proposed model,
between the probability that a focal patch goes extinct and proximity to newly extinct neighbors (extinction connectivity, Se) for a
typical scenario in which the adult population size is 2 (the median) and colonization probability is 0.28 (mean across all patches
and years). The solid line shows this relationship including a rescue effect (E*¼E[1� C]), and the shaded areas are calculated using
the posterior modal values of b0 (1.62) and b1 (�0.75) and the 95% CIs of b2 and thus denote uncertainty in b2. To illustrate that
removing the rescue effect increases the predicted extinction probability, the dash-dotted line shows the relationship under the same
conditions with the exception that E¼E (i.e., no rescue effect). The shaded areas are calculated as in panel (a). (d) The relationship
between extinction probability and the number of adults in the focal patch (solid line) for a typical scenario where extinction
connectivity is 0.1 (mean across all patches and years) and the inclusion of a rescue effect for which colonization probability is fixed
at 0.28 (mean across all patches and years). Here we do not show a comparison with and without the rescue effect. Shaded areas
represent uncertainty in the intercept (b0) and the slope (b1) via the 95% CIs.
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and ,0.5 for those observed as empty. The predicted

probability of occupancy is Ci,t if empty at time t � 1,

and is 1 � Ei;t(1 � Ci,t) if occupied at time t � 1. In

addition to having a lower DIC (DDIC¼ 17.78; Table 1:

footnotes � vs. �), Mbest predicted individual patch

occupancy states better than Mbase (Fig. 3b).

DISCUSSION

In this paper we presented a natural metapopulation

of water voles that conforms to the area–isolation

paradigm such that connectivity to extant populations

and population size adequately describe patterns of

colonization and extinction, respectively. We showed

that the number of juvenile voles, rather than total

population size, in the surrounding extant patches is a

better predictor of colonization, whereas the number of

adult voles in a patch is a better predictor of extinction

events. That is, stage structure is important in meta-

population processes. We presented a novel extension of

SPOMs that accounts for spatial structure in extinction

using extinction connectivity, which is particularly

convenient for comparing the scale of correlation in

both extinction and colonization. Extinction and colo-

nization were spatially structured but at very different

scales (extinction and colonization pressure halve every

0.89 km and 12.40 km, respectively; Fig. 2a). Finally,

our study provided compelling evidence of a rescue

effect.

This study is in agreement with many empirical

studies showing that patch occupancy dynamics are

better described when demographic structure is consid-

ered: in this case, stage structure rather than total

population size (Crone et al. 2001, Schooley and Wiens

2005, Ozgul et al. 2009) or patch size (Pellet et al. 2007).

Not considering stage structure produced biased esti-

mates of the scale of dispersal (log(2)/a: juvenile¼ 12.40

km vs. total population ¼ 5.52 km). That juveniles

should be a more informative determinant of coloniza-

tion is biologically consistent with observations in water

voles that most movement happens early in life ( juvenile

natal dispersal), as is the case for most small-mammal

species (Telfer et al. 2001, Lambin et al. 2004, Le

Galliard et al. 2011). It is also sensible that adult

population size should determine the fate of patches in

terms of their extinction risk for two reasons. First, they

have near nonoverlapping breeding generations and

individuals are almost never caught in their third

summer; coupled with our results that juveniles are the

more mobile life stage, smaller numbers of perishing

adults must therefore be an informative measure of

extinction risk. Secondly, colony sizes are small and,

given that 59% of local populations are single family

groups, natal dispersal is important to avoid inbreeding.

Larger adult population sizes increase the likelihood

that multiple family groups are present within a site, and

we propose that the pressure to emigrate from these

patches may be reduced where unrelated potential mates

are present. This is seen in Fig. 2d, where patches with

10 or more individuals have an almost zero probability

of going extinct.

Using population size in SPOMs incurs added model

complexity (Ovaskainen 2002). Although the ability of

our model to make long-term forward predictions is

limited, we show that fitting stage-structured models to

patch occupancy data has important benefits for

understanding the roles of demography and spatial

autocorrelation in naturally occurring metapopulations.

Our findings provide results that could inform sensible

parameterization of predictive simulation (sensu Moila-

nen 2004) and integrated (Buckland et al. 2004,

Harrison et al. 2011) metapopulation models. Notably,

the framework presented here does not account for

FIG. 3. (a) Difference (mean and 95% Bayesian credible
interval, CI), between the observed number of turnover events
and the predicted number of turnover events under the
proposed (Mbest) model. The figure shows, for each year, the
mean of the simulated number of turnovers that were generated
by summing the predicted probabilities of extinction (solid
circles) and colonization (open circles) events. (b) Using the
metric PCC (proportion correctly classified), we compared the
predicted patch occupancy probabilities under the best-sup-
ported model (Mbest) to the model with no stage structure, i.e.,
using total population size, and no spatially correlated
extinction term (Mbase). We use modal values of predicted
patch occupancy probabilities from 25 000 simulations under
each model.
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imperfect detection (Mackenzie et al. 2003). In this

system, however, estimates of detection probability are

high (0.85 CI 0.72–0.99; C. Sutherland, D. Elston, and

X. Lambin, unpublished manuscript) and a simulation

study investigating the sensitivity of SPOM model

parameters found that parameter estimates were not

sensitive to such small detection errors (Bierman 2004).

There has been discussion as to the role of dispersal in

mitigating the detrimental effect of correlated extinc-

tions (Johst et al. 2002, Ovaskainen et al. 2002),

although empirical evidence of such multi-scale process-

es in a natural system is rare. In their theoretical

investigation of the interplay between the scales of

dispersal and correlated habitat loss, Ovaskainen et al.

(2002) suggest that large-scale dispersal can reduce the

significance of short-scale landscape correlation. Using a

natural metapopulation that appears to be in equilibri-

um, we have quantified the spatial scales of both

dispersal (large scale, 12.40 km) and correlated extinc-

tions (small scale, 0.89 km). Moreover, we show that

metapopulations can, at least in the short term, persist

despite correlated extinctions when dispersal distances

are sufficiently large. Such short-scale correlations,

although not consistent with climatic effects, could

result from predator foraging behavior or disease/

pathogen transfer. Interestingly, our estimates of the

scale of the correlated extinction is consistent with

patterns of mustelid (Mustela nivalis or M. erminea)

predation, suggested by Clinchy et al. (2002) to be

affecting a similar-sized small mammal in a man-made

patch network in California.

The rescue effect predicts that populations should

benefit from reduced extinction risk when immigration is

sufficiently frequent such that, particularly where

colonies are small, their size is boosted by even a small

number of immigrants (Brown and Kodric-Brown

1977). There are few empirical demonstrations of the

beneficial nature of the rescue effect, and here we show

convincing evidence of a nontrivial rescue effect. At

median population size (two voles) and in the absence of

correlated extinction, a rescue effect reduces extinction

from 0.53 to 0.35 (Fig. 2c).

Our results have demonstrated that the ecologically

important processes of colonization and extinction have

significant dependencies on demographic stage struc-

ture. The use of stage-specific population size can better

describe metapopulation processes, and we suggest that,

where possible, details regarding life stage be incorpo-

rated. Demonstration of a range of processes operating

within the same natural metapopulation is novel,

particularly empirical quantification of the spatial scales

of both colonization and extinction and the compelling

evidence of a recue effect. We emphasize the need to

consider spatial scale in fragmented populations beyond

just distance-dependent dispersal. As predicted by

theory, metapopulations can be resilient to correlated

extinctions when the scale of dispersal is greater than

that of extinction. While maintaining the simplicity and

tractability of the SPOM, we were able to identify a

variety of metapopulation processes operating at mul-

tiple spatial scales and add to the growing understanding

of metapopulation processes.
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SUPPLEMENTAL MATERIAL

Appendix A

Details of the closed-capture model that was used to estimate the probability of trapping an individual at least once (Ecological
Archives E093-231-A1).

Appendix B

Photographs of the study system at different scales illustrating the extent of the study system and habitat patches (Ecological
Archives E093-231-A2).

Supplement

British national grid XY coordinates of habitat patches, colony size data which give the number of individuals in a patch per
year, and the OpenBUGS code for implementing the SPOM (Ecological Archives E093-231-S1).
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