1,310 research outputs found
Neonatal Rats Exhibit a Predominantly Anti-Inflammatory Response following Spinal Cord Injury.
It has been reported that children may respond better than adults to a spinal cord injury (SCI) of similar severity. There are known biomechanical differences in the developing spinal cord that may contribute to this "infant lesion effect," but the underlying mechanisms are unknown. Using immunohistochemistry, we have previously demonstrated a different injury progression and immune cell response after a mild thoracic contusion SCI in infant rats, as compared to adult rats. Here, we investigated the acute inflammatory responses using flow cytometry and ELISA at 1 h, 24 h, and 1 week after SCI in neonatal (P7) and adult (9 weeks) rats, and locomotor recovery was examined for 6 weeks after injury. Adult rats exhibited a pronounced pro-inflammatory response characterized by neutrophils and M1-like macrophage infiltration and Th1 cytokine secretion. Neonatal rats exhibited a decreased pro-inflammatory response characterized by a higher proportion of M2-like macrophages and reduced Th1 cytokine responses, as compared to adults. These results suggest that the initial inflammatory response to SCI is predominantly anti-inflammatory in very young animals
Differences in the cellular response to acute spinal cord injury between developing and mature rats highlights the potential significance of the inflmmatory response
© 2017 Sutherland, Mathews, Mao, Nguyen and Gorrie. There exists a trend for a better functional recovery from spinal cord injury (SCI) in younger patients compared to adults, which is also reported for animal studies; however, the reasons for this are yet to be elucidated. The post injury tissue microenvironment is a complex milieu of cells and signals that interact on multiple levels. Inflammation has been shown to play a significant role in this post injury microenvironment. Endogenous neural progenitor cells (NPC), in the ependymal layer of the central canal, have also been shown to respond and migrate to the lesion site. This study used a mild contusion injury model to compare adult (9 week), juvenile (5 week) and infant (P7) Sprague-Dawley rats at 24 h, 1, 2, and 6 weeks post-injury (n = 108). The innate cells of the inflammatory response were examined using counts of ED1/IBA1 labeled cells. This found a decreased inflammatory response in the infants, compared to the adult and juvenile animals, demonstrated by a decreased neutrophil infiltration and macrophage and microglial activation at all 4 time points. Two other prominent cellular contributors to the post-injury microenvironment, the reactive astrocytes, which eventually form the glial scar, and the NPC were quantitated using GFAP and Nestin immunohistochemistry. After SCI in all 3 ages there was an obvious increase in Nestin staining in the ependymal layer, with long basal processes extending into the parenchyma. This was consistent between age groups early post injury then deviated at 2 weeks. The GFAP results also showed stark differences between the mature and infant animals. These results point to significant differences in the inflammatory response between infants and adults that may contribute to the better recovery indicated by other researchers, as well as differences in the overall injury progression and cellular responses. This may have important consequences if we are able to mirror and manipulate this response in patients of all ages; however much greater exploration in this area is required
Fractional Synthesis Rates of Individual Proteins in Rat Soleus and Plantaris Muscles.
Differences in the protein composition of fast- and slow-twitch muscle may be maintained by different rates of protein turnover. We investigated protein turnover rates in slow-twitch soleus and fast-twitch plantaris of male Wistar rats (body weight 412 ± 69 g). Animals were assigned to four groups (n = 3, in each), including a control group (0 d) and three groups that received deuterium oxide (D2O) for either 10 days, 20 days or 30 days. D2O administration was initiated by an intraperitoneal injection of 20 μL of 99% D2O-saline per g body weight, and maintained by provision of 4% (v/v) D2O in the drinking water available ad libitum. Soluble proteins from harvested muscles were analysed by liquid chromatography-tandem mass spectrometry and identified against the SwissProt database. The enrichment of D2O and rate constant (k) of protein synthesis was calculated from the abundance of peptide mass isotopomers. The fractional synthesis rate (FSR) of 44 proteins in soleus and 34 proteins in plantaris spanned from 0.58%/day (CO1A1: Collagen alpha-1 chain) to 5.40%/day NDRG2 (N-myc downstream-regulated gene 2 protein). Eight out of 18 proteins identified in both muscles had a different FSR in soleus than in plantaris (p < 0.05)
Dynamic changes in the brain protein interaction network correlates with progression of Aβ42 pathology in Drosophila
Alzheimer’s disease (AD), the most prevalent form of dementia, is a progressive and devastating neurodegenerative condition for which there are no effective treatments. Understanding the molecular pathology of AD during disease progression may identify new ways to reduce neuronal damage. Here, we present a longitudinal study tracking dynamic proteomic alterations in the brains of an inducible Drosophila melanogaster model of AD expressing the Arctic mutant Aβ42 gene. We identified 3093 proteins from flies that were induced to express Aβ42 and age-matched healthy controls using label-free quantitative ion-mobility data independent analysis mass spectrometry. Of these, 228 proteins were significantly altered by Aβ42 accumulation and were enriched for AD-associated processes. Network analyses further revealed that these proteins have distinct hub and bottleneck properties in the brain protein interaction network, suggesting that several may have significant effects on brain function. Our unbiased analysis provides useful insights into the key processes governing the progression of amyloid toxicity and forms a basis for further functional analyses in model organisms and translation to mammalian systems
A novel locus for Meckel-Gruber syndrome, MKS3, maps to chromosome 8q24
Meckel-Gruber syndrome (MKS), the most common monogenic cause of neural tube defects, is an autosomal recessive disorder characterised by a combination of renal cysts and variably associated features, including developmental anomalies of the central nervous system (typically encephalcoele), hepatic ductal dysplasia and cysts, and polydactyly. Locus heterogeneity has been demonstrated by the mapping of the MKS1 locus to 17q21-24 in Finnish kindreds, and of MKS2 to 11q13 in North African-Middle Eastern cohorts. In the present study, we have investigated the genetic basis of MKS in eight consanguineous kindreds, originating from the Indian sub-continent, that do not show linkage to either MKS1 or MKS2. We report the localisation of a third MKS locus (MKS3) to chromosome 8q24 in this cohort by a genome-wide linkage search using autozygosity mapping. We identified a 26-cM region of autozygosity between D8S586 and D8S1108 with a maximum cumulative two-point LOD score at D8S1179 (Z(max)=3.04 at theta=0.06). A heterogeneity test provided evidence of one unlinked family. Exclusion of this family from multipoint analysis maximised the cumulative multipoint LOD score at locus D8S1128 (Z(max)=5.65). Furthermore, a heterozygous SNP in DDEF1, a putative candidate gene, suggested that MKS3 mapped within a 15-cM interval. Comparison of the clinical features of MKS3-linked cases with reports of MKS1- and MKS2-linked kindreds suggests that polydactyly (and possibly encephalocele) appear less common in MKS3-linked families
Genuine Personality Recognition from Highly Constrained Face Images
People are able to accurately estimate personality traits, merely on the basis of \u201cpassport\u201d-style neutral faces and, thus, cues must exist that allow for such estimation. However, up to date, there has been little progress in identifying the form and location of these cues. In this paper we address the problem of inferring true personality traits in highly constrained images using state of art machine learning techniques, in particular, deep networks and class activation maps analysis. The novelty of our work consists in that, differently from the vast majority of the current and past approaches (that refer to the problem of consensus personality rating prediction) we predict the genuine personality based on highly constrained images: the target\u2019s are self ratings on a validated personality inventory and we restrict to passport-like photos, in which so-called controllable cues are minimized. Our results show that self-reported personality traits can be accurately evaluated from facial features. A preliminar analysis on the features activation maps shows promising results for a deeper understanding on relevant facial cues for traits estimation
Classifying and scoring of molecules with the NGN: new datasets, significance tests, and generalization
<p>Abstract</p> <p/> <p>This paper demonstrates how a Neural Grammar Network learns to classify and score molecules for a variety of tasks in chemistry and toxicology. In addition to a more detailed analysis on datasets previously studied, we introduce three new datasets (BBB, FXa, and toxicology) to show the generality of the approach. A new experimental methodology is developed and applied to both the new datasets as well as previously studied datasets. This methodology is rigorous and statistically grounded, and ultimately culminates in a Wilcoxon significance test that proves the effectiveness of the system. We further include a complete generalization of the specific technique to arbitrary grammars and datasets using a mathematical abstraction that allows researchers in different domains to apply the method to their own work.</p> <p>Background</p> <p>Our work can be viewed as an alternative to existing methods to solve the quantitative structure-activity relationship (QSAR) problem. To this end, we review a number approaches both from a methodological and also a performance perspective. In addition to these approaches, we also examined a number of chemical properties that can be used by generic classifier systems, such as feed-forward artificial neural networks. In studying these approaches, we identified a set of interesting benchmark problem sets to which many of the above approaches had been applied. These included: ACE, AChE, AR, BBB, BZR, Cox2, DHFR, ER, FXa, GPB, Therm, and Thr. Finally, we developed our own benchmark set by collecting data on toxicology.</p> <p>Results</p> <p>Our results show that our system performs better than, or comparatively to, the existing methods over a broad range of problem types. Our method does not require the expert knowledge that is necessary to apply the other methods to novel problems.</p> <p>Conclusions</p> <p>We conclude that our success is due to the ability of our system to: 1) encode molecules losslessly before presentation to the learning system, and 2) leverage the design of molecular description languages to facilitate the identification of relevant structural attributes of the molecules over different problem domains.</p
A pragmatic cluster randomised trial evaluating three implementation interventions
Background
Implementation research is concerned with bridging the gap between evidence and practice through the study of methods to promote the uptake of research into routine practice. Good quality evidence has been summarised into guideline recommendations to show that peri-operative fasting times could be considerably shorter than patients currently experience. The objective of this trial was to evaluate the effectiveness of three strategies for the implementation of recommendations about peri-operative fasting.
Methods
A pragmatic cluster randomised trial underpinned by the PARIHS framework was conducted during 2006 to 2009 with a national sample of UK hospitals using time series with mixed methods process evaluation and cost analysis. Hospitals were randomised to one of three interventions: standard dissemination (SD) of a guideline package, SD plus a web-based resource championed by an opinion leader, and SD plus plan-do-study-act (PDSA). The primary outcome was duration of fluid fast prior to induction of anaesthesia. Secondary outcomes included duration of food fast, patients' experiences, and stakeholders' experiences of implementation, including influences. ANOVA was used to test differences over time and interventions.
Results
Nineteen acute NHS hospitals participated. Across timepoints, 3,505 duration of fasting observations were recorded. No significant effect of the interventions was observed for either fluid or food fasting times. The effect size was 0.33 for the web-based intervention compared to SD alone for the change in fluid fasting and was 0.12 for PDSA compared to SD alone. The process evaluation showed different types of impact, including changes to practices, policies, and attitudes. A rich picture of the implementation challenges emerged, including inter-professional tensions and a lack of clarity for decision-making authority and responsibility.
Conclusions
This was a large, complex study and one of the first national randomised controlled trials conducted within acute care in implementation research. The evidence base for fasting practice was accepted by those participating in this study and the messages from it simple; however, implementation and practical challenges influenced the interventions' impact. A set of conditions for implementation emerges from the findings of this study, which are presented as theoretically transferable propositions that have international relevance. Trial registration ISRCTN18046709 - Peri-operative Implementation Study Evaluation (POISE
- …