307 research outputs found

    Magnesium lactate in the treatment of Gitelman syndrome: patient-reported outcomes.

    Get PDF
    BACKGROUND: Gitelman syndrome (GS) is a rare recessively inherited renal tubulopathy associated with renal potassium (K) and magnesium (Mg) loss. It requires lifelong K and Mg supplementation at high doses that are at best unpalatable and at worst, intolerable. In particular, gastrointestinal side effects often limit full therapeutic usage. METHODS: We report here the analysis of a cohort of 28 adult patients with genetically proven GS who attend our specialist tubular disorders clinic, in whom we initiated the use of a modified-release Mg preparation (slow-release Mg lactate) and who were surveyed by questionnaire. RESULTS: Twenty-five patients (89%) preferred the new treatment regimen. Of these 25, 17 (68%) regarded their symptom burden as improved and seven reported no worsening. Of the 25 who were not Mg-treatment naïve, 13 (59%) patients reported fewer side effects, 7 (32%) described them as the same and only 2 (9%) considered side effects to be worse. Five were able to increase their dose without ill-effect. Overall, biochemistry improved in 91% of the 23 patients switched from therapy with other preparations who chose to continue the modified-release Mg preparation. Eleven (48%) improved both their Mg and K mean levels, 3 (13%) improved Mg levels only and in 7 cases (30%), K levels alone rose. CONCLUSIONS: Patient-reported and biochemical outcomes using modified-release Mg supplements were very favourable, and patient choice should play a large part in choosing Mg supplements with GS patients.This work was supported by the Wellcome Trust and the NIHR Cambridge Biomedical Research Centre, and contains data that were presented in abstract form at ASN Kidney week 2014.This is the final version of the article. It first appeared from Oxford University Press via https://doi.org/10.1093/ndt/gfw01

    Glutathione in Cancer Cell Death

    Get PDF
    Glutathione (L-γ-glutamyl-L-cysteinyl-glycine; GSH) in cancer cells is particularly relevant in the regulation of carcinogenic mechanisms; sensitivity against cytotoxic drugs, ionizing radiations, and some cytokines; DNA synthesis; and cell proliferation and death. The intracellular thiol redox state (controlled by GSH) is one of the endogenous effectors involved in regulating the mitochondrial permeability transition pore complex and, in consequence, thiol oxidation can be a causal factor in the mitochondrion-based mechanism that leads to cell death. Nevertheless GSH depletion is a common feature not only of apoptosis but also of other types of cell death. Indeed rates of GSH synthesis and fluxes regulate its levels in cellular compartments, and potentially influence switches among different mechanisms of death. How changes in gene expression, post-translational modifications of proteins, and signaling cascades are implicated will be discussed. Furthermore, this review will finally analyze whether GSH depletion may facilitate cancer cell death under in vivo conditions, and how this can be applied to cancer therapy

    Allograft rejection and tubulointerstitial fibrosis in human kidney allografts: Interrogation by urinary cell mRNA profiling

    Get PDF
    Because the kidney allograft has the potential to function as an in-vivo flow cytometer and facilitate the access of immune cells and kidney parenchymal cells in to the urinary space, we hypothesized that mRNA profiling of urinary cells offers a noninvasive means of assessing the kidney allograft status. We overcame the inherent challenges of urinary cell mRNA profiling by developing pre-amplification protocols to compensate for low RNA yield from urinary cells and by developing robust protocols for absolute quantification mRNAs using RT-PCR assays. Armed with these tools, we undertook first single-center studies urinary cell mRNA profiling and then embarked on the multicenter Clinical Trials in Organ Transplantation-04 study of kidney transplant recipients. We report here our discovery and validation of diagnostic and prognostic biomarkers of acute cellular rejection and of interstitial fibrosis and tubular atrophy (IF/TA). Our urinary cell mRNA profiling studies, in addition to demonstrating the feasibility of accurate diagnosis of acute cellular rejection and IF/TA in the kidney allograft, advance mechanistic and potentially targetable biomarkers. Interventional trials, guided by urinary cell mRNA profiles, may lead to personalized immunosuppression in recipients of kidney allografts

    Antibiotic subclasses differentially perturb the gut microbiota in kidney transplant recipients

    Get PDF
    IntroductionThe impact of antibiotics on the gut microbiota in kidney transplant recipients is not well characterized. In this study, we determine the impact of different subclasses of antibiotics on the gut microbiota in a cohort of 168 kidney transplant recipients.MethodsGut microbiome profiling was performed on 510 fecal specimens using 16S rRNA gene sequencing of the V4-V5 hypervariable region. We classified fecal specimens by antibiotic exposure into 5 categories: Beta-lactam, Fluoroquinolone (FQ), Beta-lactam & FQ Group, Other Antibiotics, and No Antibiotic (No Abx). Mixed-effects regression models were utilized to identify changes in microbial diversity and in the centered log-ratio (CLR) transformed abundance of genera while adjusting for important covariates.ResultsAntibiotic administration was associated with a significant decrease in the Shannon alpha diversity index, a decreased abundance of 11 taxa including Eubacterium and Ruminococcus, and an increased abundance of 16 taxa including Enterococcus and Staphylococcus. Exposure to Beta-lactam antibiotics was associated with an increased abundance of 10 taxa including Enterococcus and a decreased abundance of 5 taxa including Eubacterium while exposure to FQ antibiotics was associated with an increased abundance of 3 taxa and a decreased abundance of 4 taxa including Ruminococcus.ConclusionsBeta-lactam antibiotics and FQ antibiotics have a profound impact on the gut microbiota in kidney transplant recipients. Given the link of the gut microbiota to infectious complications, antibiotic associated changes in the microbiota may lead to an increased risk for further infections

    Glutathione and Adaptive Immune Responses against Mycobacterium tuberculosis Infection in Healthy and HIV Infected Individuals

    Get PDF
    Glutathione (GSH), a tripeptide antioxidant, is essential for cellular homeostasis and plays a vital role in diverse cellular functions. Individuals who are infected with Human immuno deficiency virus (HIV) are known to be susceptible to Mycobacterium tuberculosis (M. tb) infection. We report that by enhancing GSH levels, T-cells are able to inhibit the growth of M. tb inside macrophages. In addition, those GSH-replenished T cell cultures produced increased levels of Interleukin-2 (IL-2), Interleukin-12 (IL-12), and Interferon-gamma (IFN-γ), cytokines, which are known to be crucial for the control of intracellular pathogens. Our study reveals that T lymphocytes that are derived from HIV infected individuals are deficient in GSH, and that this deficiency correlates with decreased levels of Th1 cytokines and enhanced growth of M. tb inside human macrophages

    Performance of Polymerase Chain Reaction Techniques Detecting Perforin in the Diagnosis of Acute Renal Rejection: A Meta-Analysis

    Get PDF
    BACKGROUND: Studies in the past have shown that perforin expression is up-regulated during acute renal rejection, which provided hopes for a non-invasive and reliable diagnostic method to identify acute rejection. However, a systematic assessment of the value of perforin as a diagnostic marker of acute renal rejection has not been performed. We conducted this meta-analysis to document the diagnostic performance of perforin mRNA detection and to identify potential variables that may affect the performance. METHODOLOGY/PRINCIPAL FINDINGS: Relevant materials that reported the diagnostic performance of perforin mRNA detection in acute renal rejection patients were extracted from electronic databases. After careful evaluation of the studies included in this analysis, the numbers of true positive, true negative, false positive and false negative cases of acute renal rejection identified by perforin mRNA detection were gathered from each data set. The publication year, sample origin, mRNA quantification method and housekeeping gene were also extracted as potential confounding variables. Fourteen studies with a total of 501 renal transplant subjects were included in this meta-analysis. The overall performance of perforin mRNA detection was: pooled sensitivity, 0.83 (95% confidence interval: 0.78 to 0.88); pooled specificity, 0.86 (95% confidence interval: 0.82 to 0.90); diagnostic odds ratio, 28.79 (95% confidence interval: 16.26 to 50.97); and area under the summary receiver operating characteristic curves value, 0.9107±0.0174. The univariate analysis of potential variables showed some changes in the diagnostic performance, but none of the differences reached statistical significance. CONCLUSIONS/SIGNIFICANCE: Despite inter-study variability, the test performance of perforin mRNA detected by polymerase chain reaction was consistent under circumstances of methodological changes and demonstrated both sensitivity and specificity in detecting acute renal rejection. These results suggest a great diagnostic potential for perforin mRNA detection as a reliable marker of acute rejection in renal allograft recipients

    Cluster analysis in severe emphysema subjects using phenotype and genotype data: an exploratory investigation

    Get PDF
    Background: Numerous studies have demonstrated associations between genetic markers and COPD, but results have been inconsistent. One reason may be heterogeneity in disease definition. Unsupervised learning approaches may assist in understanding disease heterogeneity. Methods: We selected 31 phenotypic variables and 12 SNPs from five candidate genes in 308 subjects in the National Emphysema Treatment Trial (NETT) Genetics Ancillary Study cohort. We used factor analysis to select a subset of phenotypic variables, and then used cluster analysis to identify subtypes of severe emphysema. We examined the phenotypic and genotypic characteristics of each cluster. Results: We identified six factors accounting for 75% of the shared variability among our initial phenotypic variables. We selected four phenotypic variables from these factors for cluster analysis: 1) post-bronchodilator FEV1 percent predicted, 2) percent bronchodilator responsiveness, and quantitative CT measurements of 3) apical emphysema and 4) airway wall thickness. K-means cluster analysis revealed four clusters, though separation between clusters was modest: 1) emphysema predominant, 2) bronchodilator responsive, with higher FEV1; 3) discordant, with a lower FEV1 despite less severe emphysema and lower airway wall thickness, and 4) airway predominant. Of the genotypes examined, membership in cluster 1 (emphysema-predominant) was associated with TGFB1 SNP rs1800470. Conclusions: Cluster analysis may identify meaningful disease subtypes and/or groups of related phenotypic variables even in a highly selected group of severe emphysema subjects, and may be useful for genetic association studies

    Human Cytomegalovirus Induces TGF-β1 Activation in Renal Tubular Epithelial Cells after Epithelial-to-Mesenchymal Transition

    Get PDF
    Human cytomegalovirus (HCMV) infection is associated epidemiologically with poor outcome of renal allografts due to mechanisms which remain largely undefined. Transforming growth factor-β1 (TGF-β1), a potent fibrogenic cytokine, is more abundant in rejecting renal allografts that are infected with either HCMV or rat CMV as compared to uninfected, rejecting grafts. TGF-β1 induces renal fibrosis via epithelial-to-mesenchymal transition (EMT) of renal epithelial cells, a process by which epithelial cells acquire mesenchymal characteristics and a migratory phenotype, and secrete molecules associated with extracellular matrix deposition and remodeling. We report that human renal tubular epithelial cells infected in vitro with HCMV and exposed to TGF-β1 underwent morphologic and transcriptional changes of EMT, similar to uninfected cells. HCMV infected cells after EMT also activated extracellular latent TGF-β1 via induction of MMP-2. Renal epithelial cells transiently transfected with only the HCMV IE1 or IE2 open reading frames and stimulated to undergo EMT also induced TGF-β1 activation associated with MMP-2 production, suggesting a role for these viral gene products in MMP-2 production. Consistent with the function of these immediate early gene products, the antiviral agents ganciclovir and foscarnet did not inhibit TGF-β1 production after EMT by HCMV infected cells. These results indicate that HCMV infected renal tubular epithelial cells can undergo EMT after exposure to TGF-β1, similar to uninfected renal epithelial cells, but that HCMV infection by inducing active TGF-β1 may potentiate renal fibrosis. Our findings provide in vitro evidence for a pathogenic mechanism that could explain the clinical association between HCMV infection, TGF-β1, and adverse renal allograft outcome
    corecore