53 research outputs found

    Comparison of animal communities on benthic and drifting brown algae Sargassum horneri in the Seto Inland Sea, Japan

    Get PDF
    2018年5月,6月に広島県竹原市周辺海域にて着生している状態および流れ藻のアカモクを採集し,動物群集相の比較を行った。着生状態および流れ藻ともにソコミジンコ目カイアシ類,端脚類,等脚類,多毛類などがアカモク上で生息していることがわかった。Hornの重複度指数を用いて,月別の着生状態と流れ藻につく動物群集組成を比較したところ,6月の流れ藻における動物群集組成がほかと大きく異なることが明らかとなった。In May and June 2018, we collected both benthic and drifting large brown algae Sargassum horneri on the coast of Takehara City, Hiroshima Prefecture, Japan. The animal communities on benthic and drifting thalli were compared. Phytal animals such as harpacticoid copepods, amphipods, isopods, and polychaetes were predominantly found on both thalli. The Horn’s overlap index showed that the animal communities on drifting thalli in June 2018 were clearly different from those of the benthic thalli

    Unusual magnetic relaxation behavior in La0.5Ca0.5MnO3 and Nd0.5Sr0.5MnO3

    Full text link
    We have carried out a systematic magnetic relaxation study, measured after applying and switching off a 5 T magnetic field to polycrystalline samples of La0.5Ca0.5MnO3 and Nd0.5Sr0.5MnO3. The long time logarithmic relaxation rate (LTLRR), decreased from 10 K to 150 K and increased from 150 K to 195 K in La0.5Ca0.5MnO3. This change in behavior was found to be related to the complete suppression of the antiferromagnetic phase above 150 K and in the presence of a 5 T magnetic field. At 195 K, the magnetization first decreased, and after a few minutes increased slowly as a function of time. Moreover, between 200 K and 245 K, the magnetization increased throughout the measured time span. The change in the slope of the curves, from negative to positive at about 200 K was found to be related to the suppression of antiferromagnetic fluctuations in small magnetic fields. A similar temperature dependence of the LTLRR was found for the Nd0.5Sr0.5MnO3 sample. However, the temperature where the LTLRR reached the minimum in Nd0.5Sr0.5MnO3 was lower than that of La0.5Ca0.5MnO3. This result agrees with the stronger ferromagnetic interactions that exist in Nd0.5Sr0.5MnO3 in comparison to La0.5Ca0.5MnO3. The above measurements suggested that the general temperature dependence of the LTLRR and the underlying physics were mainly independent of the particular charge ordering system considered. All relaxation curves could be fitted using a logarithmic law at long times. This slow relaxation was attributed to the coexistence of ferromagnetic and antiferromagnetic interactions between Mn ions, which produced a distribution of energy barriers.Comment: Accepted to PRB as a regular article, 10 figures, Scheduled Issue: 01 June 200

    Precocious Metamorphosis in the Juvenile Hormone–Deficient Mutant of the Silkworm, Bombyx mori

    Get PDF
    Insect molting and metamorphosis are intricately governed by two hormones, ecdysteroids and juvenile hormones (JHs). JHs prevent precocious metamorphosis and allow the larva to undergo multiple rounds of molting until it attains the proper size for metamorphosis. In the silkworm, Bombyx mori, several “moltinism” mutations have been identified that exhibit variations in the number of larval molts; however, none of them have been characterized molecularly. Here we report the identification and characterization of the gene responsible for the dimolting (mod) mutant that undergoes precocious metamorphosis with fewer larval–larval molts. We show that the mod mutation results in complete loss of JHs in the larval hemolymph and that the mutant phenotype can be rescued by topical application of a JH analog. We performed positional cloning of mod and found a null mutation in the cytochrome P450 gene CYP15C1 in the mod allele. We also demonstrated that CYP15C1 is specifically expressed in the corpus allatum, an endocrine organ that synthesizes and secretes JHs. Furthermore, a biochemical experiment showed that CYP15C1 epoxidizes farnesoic acid to JH acid in a highly stereospecific manner. Precocious metamorphosis of mod larvae was rescued when the wild-type allele of CYP15C1 was expressed in transgenic mod larvae using the GAL4/UAS system. Our data therefore reveal that CYP15C1 is the gene responsible for the mod mutation and is essential for JH biosynthesis. Remarkably, precocious larval–pupal transition in mod larvae does not occur in the first or second instar, suggesting that authentic epoxidized JHs are not essential in very young larvae of B. mori. Our identification of a JH–deficient mutant in this model insect will lead to a greater understanding of the molecular basis of the hormonal control of development and metamorphosis

    Soft porous crystal meets TCNQ: charge transfer-type porous coordination polymers

    Get PDF
    The significant progress of porous coordination polymers (or metal–organic frameworks) has been attracting the attention of a lot of scientists in various disciplines and encouraging their entry into this field. The synergy of diverse scientific senses brings further spread of the chemistry of porous coordination polymers. In this review, we introduced the recent developments in PCPs resulting from the hybridization with TCNQ chemistry. Electronic and structural diversities of TCNQ provide novel and advanced porous properties, when it is hybridized with a flexible nature of porous coordination polymers

    Chemistry and application of flexible porous coordination polymers

    No full text
    Porous coordination polymers (PCPs), which are microporous materials, have been given much attention from both scientific and commercial aspects regarding their application to gas storage, gas separation and catalytic reaction because of the regularity of their pore shape and pore size, accompanied with the functionality. Moreover, in recent years, flexible PCPs, which are structurally transformable depending upon external stimuli, have been attractive because they provide unique properties, dissimilar to those of zeolites. In this review, the chemistry and application of flexible crystalline PCPs are summarized and discussed
    corecore