44 research outputs found

    Osteogenic Factor Runx2 Marks a Subset of Leptin Receptor-Positive Cells that Sit Atop the Bone Marrow Stromal Cell Hierarchy

    Get PDF
    Bone marrow mesenchymal stem and progenitor cells (BM-MSPCs) maintain homeostasis of bone tissue by providing osteoblasts. Although several markers have been identified for labeling of MSPCs, these labeled cells still contain non-BM-MSPC populations. Studies have suggested that MSPCs are observed as leptin receptor (LepR)-positive cells, whereas osteoblasts can be classified as positive for Runx2, a master regulator for osteoblastogenesis. Here, we demonstrate, using Runx2-GFP reporter mice,that the LepR-labeled population contains Runx2-GFPlow sub-population, which possesses higher fibroblastic colony-forming units (CFUs) and mesensphere capacity, criteria for assessing stem cell activity, than the Runx2-GFP− population. In response to parathyroid hormone (PTH), a bone anabolic hormone, LepR+Runx2-GFPlow cells increase Runx2 expression and form multilayered structures near the bone surface. Subsequently, the multilayered cells express Osterix and Type I collagen α, resulting in generation of mature osteoblasts. Therefore, our results indicate that Runx2 is weakly expressed in the LepR+ population without osteoblastic commitment, and the LepR+Runx2-GFPlow stromal cells sit atop the BM stromal hierarchy

    Role of Abscisic Acid in Flood-Induced Secondary Aerenchyma Formation in Soybean (Glycine max) Hypocotyls

    No full text
    Phellogen (cork cambium) usually produces cork tissue, but when flooded it produces secondary aerenchyma, comprising living cells with non-suberized walls in the stems, roots, and root nodules of some Fabaceae. In the cell walls of cork tissues, the plant hormone abscisic acid (ABA), promotes suberin deposition. Thus, ABA may decrease in flooded tissues, where secondary aerenchyma cells are developing. Here, we investigated whether ABA is involved in the formation of aerenchyma in soybean (Glycine max) hypocotyls when flooded. Hypocotyls flooded with water produced a large amount of secondary aerenchyma, and were highly porous. On the other hand, application of 1.0 μM ABA suppressed the enlargement of phellogen-derived cells, thereby suppressing subsequent gas space formation, and then almost completely inhibited aerenchyma development. Berberine-aniline blue staining indicated that not only elongated cells in the secondary aerenchyma but also packed cells, which were formed under flooding with ABA, contained no suberized cell walls. Compared to non-flooded plants, the endogenous ABA concentration in the flooded hypocotyls was decreased to 50% within 24 hr, and the low level was maintained for at least 72 hr. In addition, phellogen developed at 48 hr after flooding and secondary aerenchyma was observed at 72 hr. These results indicate that secondary aerenchyma formation requires a decrease in negative regulator ABA in soybean plants, that is, ABA inhibits elongation of cells derived from phellogen in secondary aerenchyma formation such as internodal cell elongation of floating rice stems

    Effects of anti-auxins on secondary aerenchyma formation in flooded soybean hypocotyls

    No full text
    In flooded hypocotyl of soybean (Glycine max), cell division in phellogen and the elongation of these cells are enhanced, and thereby a secondary aerenchyma with high porosity is produced. Auxin controls cell division and cell elongation in many plants, so we studied its role in secondary aerenchyma development. Soybean plants with fully expanded unifoliolate leaves were flooded for 6 d with solutions (100 μM each) of seven anti-auxins. TIBA, NPA, HFCA, 1-NOA, or CHPAA did not restrict the secondary aerenchyma formation, while MH moderately suppressed the aerenchyma development, and PCIB strongly inhibited the development of phellogen and secondary aerenchyma. However, the endogenous IAA concentrations in the flooded hypocotyls did not increase or decrease relative to the controls until 72 h, when a secondary aerenchyma was observed. From these results, it is unclear whether auxin plays an important role in the process of secondary aerenchyma formation under flooding

    Quantitative Proteomics Reveals That Peroxidases Play Key Roles in Post-flooding Recovery in Soybean Roots

    No full text
    Soybean is an important legume crop that exhibits markedly reduced growth and yields under flooding conditions. To unravel the mechanisms involved in recovery after flooding in soybean root, gel-free proteomic analysis was performed. Morphological analysis revealed that growth suppression was more severe with increased flooding duration. Out of a total of 1645 and 1707 identified proteins, 73 and 21 proteins were changed significantly during the recovery stage following 2 and 4 days flooding, respectively. Based on the proteomic, clustering, and in silico protein–protein interaction analyses, six key enzymes were analyzed at the mRNA level. Lipoxygenase 1, which was increased at the protein level during the recovery period, was steadily down-regulated at the mRNA level. The peroxidase superfamily protein continuously increased in abundance during the course of recovery and was up-regulated at the mRNA level. HAD acid phosphatase was decreased at the protein level and down-regulated at the transcript level, while isoflavone reductase and an unknown protein were increased at both the protein and mRNA levels. Consistent with these findings, the enzymatic activity of peroxidase was decreased under flooding stress but increased significantly during the recovery sage. These results suggest that peroxidases might play key roles in post-flooding recovery in soybean roots through the scavenging of toxic radicals
    corecore