11 research outputs found

    Twin gradients in APOBEC3 edited HIV-1 DNA reflect the dynamics of lentiviral replication

    Get PDF
    The human immunodeficiency virus (HIV) Vif protein blocks incorporation of two host cell cytidine deaminases, APOBEC3F and 3G, into the budding virion. Not surprisingly, on a vif background nascent minus strand DNA can be extensively edited leaving multiple uracil residues. Editing occurs preferentially in the context of TC (GA on the plus strand) and CC (GG) depending on the enzyme. To explore the distribution of APOBEC3F and –3G editing across the genome, a product/substrate ratio (AA + AG)/(GA + GG) was computed for a series of 30 edited genomes present in the data bases. Two highly polarized gradients were noted each with maxima just 5′ to the central polypurine tract (cPPT) and LTR proximal polypurine tract (3′PPT). The gradients are in remarkable agreement with the time the minus strand DNA remains single stranded. In vitro analyses of APOBEC3G deamination of nascent cDNA spanning the two PPTs showed no pronounced dependence on the PPT RNA:DNA heteroduplex ruling out the competing hypothesis of a PPT orientation effect. The degree of hypermutation varied smoothly among genomes indicating that the number of APOBEC3 molecules packaged varied considerably

    Inversing the natural hydrogen bonding rule to selectively amplify GC-rich ADAR-edited RNAs

    Get PDF
    DNA complementarity is expressed by way of three hydrogen bonds for a G:C base pair and two for A:T. As a result, careful control of the denaturation temperature of PCR allows selective amplification of AT-rich alleles. Yet for the same reason, the converse is not possible, selective amplification of GC-rich alleles. Inosine (I) hydrogen bonds to cytosine by two hydrogen bonds while diaminopurine (D) forms three hydrogen bonds with thymine. By substituting dATP by dDTP and dGTP by dITP in a PCR reaction, DNA is obtained in which the natural hydrogen bonding rule is inversed. When PCR is performed at limiting denaturation temperatures, it is possible to recover GC-rich viral genomes and inverted Alu elements embedded in cellular mRNAs resulting from editing by dsRNA dependent host cell adenosine deaminases. The editing of Alu elements in cellular mRNAs was strongly enhanced by type I interferon induction indicating a novel link mRNA metabolism and innate immunity

    Genetic Editing of HBV DNA by Monodomain Human APOBEC3 Cytidine Deaminases and the Recombinant Nature of APOBEC3G

    Get PDF
    Hepatitis B virus (HBV) DNA is vulnerable to editing by human cytidine deaminases of the APOBEC3 (A3A-H) family albeit to much lower levels than HIV cDNA. We have analyzed and compared HBV editing by all seven enzymes in a quail cell line that does not produce any endogenous DNA cytidine deaminase activity. Using 3DPCR it was possible to show that all but A3DE were able to deaminate HBV DNA at levels from 10−2 to 10−5 in vitro, with A3A proving to be the most efficient editor. The amino terminal domain of A3G alone was completely devoid of deaminase activity to within the sensitivity of 3DPCR (∼10−4 to 10−5). Detailed analysis of the dinucleotide editing context showed that only A3G and A3H have strong preferences, notably CpC and TpC. A phylogenic analysis of A3 exons revealed that A3G is in fact a chimera with the first two exons being derived from the A3F gene. This might allow co-expression of the two genes that are able to restrict HIV-1Δvif efficiently

    Influence des cytidines et des adénosines désaminases sur la replication et la variabilité des virus à ARN et des rétrovirus

    No full text
    PARIS-BIUSJ-Thèses (751052125) / SudocPARIS-BIUSJ-Physique recherche (751052113) / SudocSudocFranceF

    Recovery of APOBEC3-edited human immunodeficiency virus G->A hypermutants by differential DNA denaturation PCR.

    No full text
    Virus genomes from the same family may exhibit a wide range in their DNA GC content, whereas viral hypermutants differ substantially in GC content from their parental genomes. As AT-rich DNA melts at lower temperatures than GC-rich DNA, use of a lower denaturation temperature during PCR should allow differential amplification of AT-rich genomes or variants within a quasispecies. The latter situation has been explored explicitly in a two-step process by using a series of well-defined viral sequences differing in their AT content. Firstly, the lowest denaturation temperature (T(p)) that allowed amplification of the parental sequence was determined. Secondly, differential amplification of AT-rich viral variants was obtained by using a denaturation temperature 1-3 degrees C lower than T(p). Application of this sensitive method to two different viruses allowed us to identify human immunodeficiency virus type 1 G-->A hypermutants in a situation where none were expected and to amplify AT-rich variants selectively within a spectrum of poliovirus mutants

    Extensive editing of both hepatitis B virus DNA strands by APOBEC3 cytidine deaminases in vitro and in vivo.

    No full text
    International audienceBecause the replication of hepatitis B virus (HBV) proceeds via an obligatory reverse transcription step in the viral capsid, cDNA is potentially vulnerable to editing by cytidine deaminases of the APOBEC3 family. To date only two edited HBV genomes, referred to as G --> A hypermutants, have been described in vivo. Recent work suggested that HBV replication was indeed restricted by APOBEC3G but by a mechanism other than editing. The issue of restriction has been explored by using a sensitive PCR method allowing differential amplification of AT-rich DNA. G --> A hypermutated HBV genomes were recovered from transfection experiments involving APOBEC3B, -3C, -3F, and -3G indicating that all four enzymes were able to extensively deaminate cytidine residues in minus-strand DNA. Unexpectedly, three of the four enzymes (APOBEC3B, -3F, and -3G) deaminated HBV plus-strand DNA as well. From the serum of two of four patients with high viremia, G --> A hypermutated genomes were recovered at a frequency of approximately 10(-4), indicating that they are, albeit relatively rare, part of the natural cycle of HBV infection. These findings suggest that human APOBEC3 enzymes can impact HBV replication via cytidine deamination

    Extensive editing of a small fraction of human T-cell leukemia virus type 1 genomes by four APOBEC3 cytidine deaminases.

    No full text
    International audienceIn the absence of the human immunodeficiency virus type 1 (HIV-1) Vif protein, the host-cell cytidine deaminases APOBEC3F and -3G are co-packaged along with virion RNA. Upon infection of target cells, nascent single-stranded DNA can be edited extensively, invariably giving rise to defective genomes called G-->A hypermutants. Although human T-cell leukemia virus type 1 (HTLV-1) replicates in the same cell type as HIV-1, it was shown here that HTLV-1 is relatively resistant to the antiviral effects mediated by human APOBEC3B, -3C, -3F and -3G. Nonetheless, a small percentage of genomes (0.

    The rabbit as an orthologous small animal model for APOBEC3A oncogenesis

    No full text
    International audienceAPOBEC3 are cytidine deaminases that convert cytidine to uridine residues. APOBEC3A and APOBEC3B enzymes able to target genomic DNA are involved in oncogenesis of a sizeable proportion of human cancers. While the APOBEC3 locus is conserved in mammals, it encodes from 1-7 genes. APOBEC3A is conserved in most mammals, although absent in pigs, cats and throughout Rodentia whereas APOBEC3B is restricted to the Primate order. Here we show that the rabbit APOBEC3 locus encodes two genes of which APOBEC3A enzyme is strictly orthologous to human APOBEC3A. The rabbit enzyme is expressed in the nucleus and the cytoplasm, it can deaminate cytidine, 5-methcytidine residues, nuclear DNA and induce double-strand DNA breaks. The rabbit APOBEC3A enzyme is negatively regulated by the rabbit TRIB3 pseudokinase protein which is guardian of genome integrity, just like its human counterpart. This indicates that the APOBEC3A/TRIB3 pair is conserved over approximately 100 million years. The rabbit APOBEC3A gene is widely expressed in rabbit tissues, unlike human APOBEC3A. These data demonstrate that rabbit could be used as a small animal model for studying APOBEC3 driven oncogenesis

    Self-cytoplasmic DNA upregulates the mutator enzyme APOBEC3A leading to chromosomal DNA damage

    No full text
    International audienceForeign and self-cytoplasmic DNA are recognized by numerous DNA sensor molecules leading to the production of type I interferons. Such DNA ago-nists should be degraded otherwise cells would be chronically stressed. Most human APOBEC3 cytidine deaminases can initiate catabolism of cytoplasmic mitochondrial DNA. Using the human myeloid cell line THP-1 with an interferon inducible APOBEC3A gene, we show that cytoplasmic DNA triggers inter-feron and production through the RNA poly-merase III transcription/RIG-I pathway leading to massive upregulation of APOBEC3A. By catalyzing C→U editing in single stranded DNA fragments, the enzyme prevents them from re-annealing so attenuating the danger signal. The price to pay is chromo-somal DNA damage in the form of CG→TA mutations and double stranded DNA breaks which, in the context of chronic inflammation, could drive cells down the path toward cancer

    Mouse APOBEC1 cytidine deaminase can induce somatic mutations in chromosomal DNA

    No full text
    International audienceBACKGROUND:APOBEC1 (A1) enzymes are cytidine deaminases involved in RNA editing. In addition to this activity, a few A1 enzymes have been shown to be active on single stranded DNA. As two human ssDNA cytidine deaminases APOBEC3A (A3A), APOBEC3B (A3B) and related enzymes across the spectrum of placental mammals have been shown to introduce somatic mutations into nuclear DNA of cancer genomes, we explored the mutagenic threat of A1 cytidine deaminases to chromosomal DNA.RESULTS:Molecular cloning and expression of various A1 enzymes reveal that the cow, pig, dog, rabbit and mouse A1 have an intracellular ssDNA substrate specificity. However, among all the enzymes studied, mouse A1 appears to be singular, being able to introduce somatic mutations into nuclear DNA with a clear 5'TpC editing context, and to deaminate 5-methylcytidine substituted DNA which are characteristic features of the cancer related mammalian A3A and A3B enzymes. However, mouse A1 activity fails to elicit formation of double stranded DNA breaks, suggesting that mouse A1 possess an attenuated nuclear DNA mutator phenotype reminiscent of human A3B.CONCLUSIONS:At an experimental level mouse APOBEC1 is remarkable among 12 mammalian A1 enzymes in that it represents a source of somatic mutations in mouse genome, potentially fueling oncogenesis. While the order Rodentia is bereft of A3A and A3B like enzymes it seems that APOBEC1 may well substitute for it, albeit remaining much less active. This modifies the paradigm that APOBEC3 and AID enzymes are the sole endogenous mutator enzymes giving rise to off-target editing of mammalian genomes
    corecore