9 research outputs found

    Tailoring a correlation between fracture resistance improvement, elastic moduli, mechanical and nuclear radiation shielding properties for sodium-borate glasses through Gallium(III) oxide incorporation

    No full text
    In the event of unanticipated events or emergency situations, such as equipment malfunctions or accidents, it is crucial for radiation shielding materials to preserve their structural integrity. Enhancing the fracture resistance of glasses has a wide range of benefits that extend to safety, durability, cost savings, energy efficiency, environmental considerations, technological innovation, consumer confidence, manufacturing efficiency, and reduced downtime. This research examines the characteristics of sodium-borate glasses with a nominal composition of 25Na2O-xGa2O3-(75-x)B2O3, (where x: 5, 10, 15, 20, 25, 27.5, and 30 mol%). The aim is to enhance fracture resistant qualities and radiation absorption with the addition of Ga2O3 into the glass composition. In addition to elastic moduli and mechanical properties, gamma-ray and fast neutron removal cross section values are determined for each glass sample. In addition to enhancing mechanical characteristics and elastic moduli, the use of Ga2O3 reinforcement has shown notable improvements in the gamma-ray and fast neutron absorption properties of sodium-borate glass samples. The NGB31.4 sample demonstrated the highest level of improvement in gamma-ray and neutron absorption characteristics. For example, the mass attenuation coefficients were calculated as 1.86645 cm2/g, 1.92189 cm2/g, 1.98875 cm2/g, 2.04052 cm2/g, 2.10506 cm2/g, 2.16271 cm2/g, and 2.17266 cm2/g for NGB5, NGB10, NGB15, NGB20, NGB25, NGB30.5, and NGB31.4 at 15 MeV photon energy, respectively. This enhancement was accomplished by incorporating Ga2O3 into the baseline sample at a mole percentage of 31.4 %. Hence, it can be concluded that the incorporation of Ga2O3 into sodium-borate glasses has the potential to serve as a systematic mechanism, leading to enhancements in mechanical strength and radiation absorption characteristics, thereby making these glasses more suitable for their intended applications. Among these samples, the greatest level of integration observed was 31.4 % mole Ga2O3. The lack of ability to examine the behavioral alterations resulting from higher Ga2O3 content in sodium-borate glasses may be regarded as a limitation of the present study. However, it is very advisable to do more research among the scientific community to thoroughly explore the potential impact of Ga2O3 on sodium-borate glasses

    Multiple Assessments on the Gamma-Ray Protection Properties of Niobium-Doped Borotellurite Glasses: A Wide Range Investigation Using Monte Carlo Simulations

    No full text
    In this study, the monotonic effect of Ta2O5 and ZrO2 in some selected borotellurite glasses was investigated in terms of their impact on gamma-ray-shielding competencies. Accordingly, three niobium-reinforced borotellurite glasses (S1 : 75TeO(2) + 15B(2)O(3) + 10Nb(2)O(5), S2 : 75TeO(2) + 15B(2)O(3) + 9Nb(2)O(5) + 1Ta(2)O(5), and S3 : 75TeO(2) + 15B(2)O(3) + 8Nb(2)O(5) + 1Ta(2)O(5) + 1ZrO(2)) were modelled in the general-purpose MCNPX Monte Carlo code. They have been defined as an attenuator sample between the point isotropic gamma-ray source and the detector in terms of determining their attenuation coefficients. To verify the MC results, attenuation coefficients were then compared with the Phy-X/PSD program data. Our findings clearly demonstrate that although some behavioral changes occurred in the shielding qualities, modest improvements occurred in the attenuation properties depending on the modifier variation and its magnitude. However, the replacement of 2% moles of Nb2O5 with 1% mole of Ta2O5 and 1% mole of ZrO2 provided significant improvements in both glass density and attenuation properties against gamma rays. Finally, the HVL values of the S3 sample were compared with some glass- and concrete-shielding materials and the S3 sample was reported for its outstanding properties. As a consequence of this investigation, it can be concluded that the indicated type of additive to be added to borotellurite glasses will provide some advantages, particularly when used in radiation fields, by increasing the shielding qualities moderately

    SnO-reinforced silicate glasses and utilization in gamma-radiation-shielding applications

    No full text
    The influence of tin (II) oxide (SnO) on the g-ray radiation-protection characteristics of binary silicate glass samples with the form (100 - x)SiO2-xSnO, 40 mol% SiSn55 > SiSn50 > SiSn45 > SiSn40. The results showed that the half-value layers of the investigated samples were in the order SiSn40 > SiSn45 > SiSn50 > SiSn55 > SiSn60. The values of EBF and EABF show proportionate variations with the photon energy and chemical composition of the glasses. Therefore, the investigated glasses can be considered satisfactory materials for gamma ray protection, particularly the SiSn60 sample, with 60 mol% tin (II) oxide

    The role of Ag2O incorporation in nuclear radiation shielding behaviors of the Li2O–Pb3O4–SiO2 glass system: A multi-step characterization study

    No full text
    We report the gamma-ray shielding properties of five different lithium silicate glasses based on the (40 − x) Li2O–10Pb3O4–50SiO2 nominal composition. Transmission factor values and some basic shielding parameters such as linear (µ) and mass attenuation coefficients (µ/ρ), half-value layer, tenth value layer, and mean free path (MFP) values of the investigated glass samples are determined in a large photon energy range. Using the G–P fitting method at various MFP values, the exposure buildup factor and energy absorption buildup factor values of the examined glasses are also calculated. Based on the findings, it can be concluded that the S5 glass specimen, which exhibits the greatest Ag2O additive and density among the various glass samples, represents a favorable choice for the purpose of shielding against gamma radiation

    The role of Ag2O incorporation in nuclear radiation shielding behaviors of the Li2O-Pb3O4-SiO2glass system: A multi-step characterization study

    No full text
    We report the gamma-ray shielding properties of five different lithium silicate glasses based on the (40 - x) Li2O-10Pb3O4-50SiO2 nominal composition. Transmission factor values and some basic shielding parameters such as linear (μ) and mass attenuation coefficients (μ/ρ), half-value layer, tenth value layer, and mean free path (MFP) values of the investigated glass samples are determined in a large photon energy range. Using the G-P fitting method at various MFP values, the exposure buildup factor and energy absorption buildup factor values of the examined glasses are also calculated. Based on the findings, it can be concluded that the S5 glass specimen, which exhibits the greatest Ag2O additive and density among the various glass samples, represents a favorable choice for the purpose of shielding against gamma radiation

    Mechanical properties, elastic moduli, transmission factors, and gamma-ray-shielding performances of Bi2O3-P2O5-B2O3-V2O5 quaternary glass system

    No full text
    Mechanical properties, elastic moduli, transmission factors (TFs), and gamma-ray shielding performance of quaternary glass systems with chemical composition (0.25-x)Bi2O3-xB(2)O(3)-0.75(50%P2O5-50%V2O5), where x = 0.05 (S1), 0.10 (S2), 0.15 (S3), and 0.20 (S4) mol%, were comprehensively studied. The MCNPX code, Phy-X/PSD software, and the Makishima-Mackenzie model were utilized to achieve the mentioned purposes. The values of the packing density (V (t)) decreased from 0.634432 to 0.600611, while those of the dissociation energy (G (t)) increased from 51.6125 kJ/cm(3) for the S1 glass sample (with Bi2O3 = 5 mol%) to 56.7525 kJ/cm(3) for the S4 glass sample (with Bi2O3 = 20 mol%). This means that the mechanical properties were enhanced by increasing the Bi2O3 content in glasses. Linear (mu) and mass attenuation (mu (m)) coefficients for the S4 glass sample were the greatest compared to those for glass materials investigated, i.e., (mu, mu (m))(S1) (HVL, TVL)(S2) > (HVL, TVL)(S3) > (HVL, TVL)(S4). The effective atomic number (Z (eff)) of investigated glasses has the same trend as of linear and mass attenuation coefficients. Our findings indicate that increasing the amount of Bi2O3 reinforcement decreased the exposure buildup factor and energy absorption buildup factor values for all mean free path values (0.5-40 mfp). All glasses recorded the minimum TF values at a thickness of 3 cm. The findings would benefit the scientific community in determining the most appropriate additive bismuth(iii) oxide/diboron trioxide type and related glass composition to provide the shielding properties previously mentioned in terms of needs and utilization requirements, as well as the most suitable glass composition

    Transmission Factor (TF) Behavior of Bi2O3-TeO2-Na2O-TiO2-ZnO Glass System: A Monte Carlo Simulation Study

    No full text
    The main objective of the present work was to assess the gamma radiation shielding competencies and gamma radiation transmission factors (TFs) for some tellurite glasses in the form of Bi2O3-TeO2-Na2O-TiO2-ZnO. MCNPX general-purpose Monte Carlo code (version 2.6.0) was utilized for the determination of TF values at various well-known radioisotope energies for different glass thicknesses from 0.5 cm to 3 cm. Moreover, some important gamma ray shielding properties were also determined in the 0.015-15 MeV energy range. The results show that glass densities were improved from 5.401 g/cm(3) to 6.138 g center dot cm(3) as a function of Bi2O3 increment in the glass composition. A S5 glass sample with the maximum Bi2O3 additive was reported with superior gamma ray shielding properties among the studied glasses. It can be concluded that Bi2O3 can be used as a functional tool in terms of improving glass density and, accordingly, gamma ray shielding attenuation properties of tellurite glasses, where the role Bi2O3 is also critical for other material properties, such as structural, optical, and mechanical
    corecore