383 research outputs found

    Politics in Amos

    Full text link
    One of the characteristics for the end of this twentieth century is a political chaos and a lack of solid foundations. The cry for peace is louder than ever in the past history of human life. Yet, the actions of man and their consequences bring forth only injustice and the oppression of the poor. The self of man does not change, even if it functions under different so-called political systems. Perhaps man\u27s politics or its policies are false or simply they are wrongly executed. It is a repeated mistake, when certain known things are separated from the style and actions of man\u27s life. The Book of Amos produces a classical example of failure to realize this God given principle. The men of Israel knew, but acted contrary to it. The pages of this research, after presenting the introductory material (time, social conditions, etc.) reveal the fulness of Amos\u27 theology, a deeper knowledge of the nature and character of the Living God. This Living God and His love should be the standard for the citizens of Israel. The standard is the guide post or politics of Israel. It is accomplished by a careful and exegetical study of choice paragraphs of the book of Amos as well as by the discussion of choice topics related to the subject. A special note of thanks is given to my wife, Mrs. Ruth L. Suski, for her hard work and patience while typing the pages of this research

    Heat capacity of α\alpha-GaN: Isotope Effects

    Full text link
    Until recently, the heat capacity of GaN had only been measured for polycrystalline powder samples. Semiempirical as well as \textit{first-principles} calculations have appeared within the past few years. We present in this article measurements of the heat capacity of hexagonal single crystals of GaN in the 20-1400K temperature range. We find that our data deviate significantly from the literature values for polycrystalline materials. The dependence of the heat capacity on the isotopic mass has also been investigated recently for monatomic crystals such as diamond, silicon, and germanium. Multi-atomic crystals are expected to exhibit a different dependence of these heat capacities on the masses of each of the isotopes present. These effects have not been investigated in the past. We also present \textit{first-principles} calculations of the dependence of the heat capacities of GaN, as a canonical binary material, on each of the Ga and N masses. We show that they are indeed different, as expected from the fact that the Ga mass affects mainly the acoustic, that of N the optic phonons. It is hoped that these calculations will encourage experimental measurements of the dependence of the heat capacity on isotopic masses in binary and more complex semiconductors.Comment: 12 pages, 5 Figures, submitted to PR

    Free-space and underwater GHz data transmission using AlGaInN laser diode technology

    Get PDF
    Laser diodes fabricated from the AlGaInN material system is an emerging technology for defence and security applications; in particular for free space laser communication. Conventional underwater communication is done acoustically with very slow data rates, short reach, and vulnurable for interception. AlGaInN blue-green laser diode technology allows the possibility of both airbourne links and underwater telecom that operate at very fast data rates (GHz), long reach (100’s of metres underwater) and can also be quantum encrypted. The latest developments in AlGaInN laser diode technology are reviewed for defence and security applications. The AlGaInN material system allows for laser diodes to be fabricated over a very wide range of wavelengths from u.v., ~380nm, to the visible ~530nm, by tuning the indium content of the laser GaInN quantum well. Ridge waveguide laser diode structures are fabricated to achieve single mode operation with optical powers of <100mW. Visible light communications at high frequency (up to 2.5 Gbit/s) using a directly modulated 422nm Galliumnitride (GaN) blue laser diode is reported in free-space and underwate

    AlGaInN Laser Diode Technology for Systems Applications

    Get PDF
    Gallium Nitride (GaN) laser diodes fabricated from the AlGaInN material system is an emerging technology that allows laser diodes to be fabricated over a very wide wavelength range from u.v. to the visible, and is a key enabler for the development of new system applications such as (underwater and terrestrial) telecommunications, quantum technologies, display sources and medical instrumentation

    Lateral grating DFB AlGaInN laser diodes for optical communications and atomic clocks

    Get PDF
    AlGaInN laser diode technology is of considerable interest for telecom applications and next generation atomic optical clocks based on Sr (by using 422nm & 461nm) and Rb at 420.2nm.Very narrow linewidths (<1MHz) are required for such applications. We report lateral gratings on AlGaInN ridge waveguide laser diodes to achieve a single wavelength device with a good side mode suppression ratio (SMSR) that is suitable for atomic clock and telecom applications

    Thermal stability of in-grown vacancy defects in GaN grown by hydride vapor phase epitaxy

    Get PDF
    We have used positron annihilation spectroscopy to study the thermal behavior of different native vacancy defects typical of freestanding GaN grown by hydride vapor phase epitaxy under high pressure annealing at different annealing temperatures. The results show that the VGa‐ON pairs dissociate and the Ga vacancies anneal out from the bulk of the material at temperatures 1500–1700K. A binding energy of Eb=1.6(4)eV can be determined for the pair. Thermal formation of Ga vacancies is observed at the annealing temperatures above 1700K, indicating that Ga vacancies are created thermally at the high growth temperature, but their ability to form complexes such as VGa‐ON determines the fraction of vacancy defects surviving the cooling down. The formation energy of the isolated Ga vacancy is experimentally determined.Peer reviewe

    High Speed Visible Light Communication Using Blue GaN Laser Diodes

    Get PDF
    GaN-based laser diodes have been developed over the last 20 years making them desirable for many security and defence applications, in particular, free space laser communications. Unlike their LED counterparts, laser diodes are not limited by their carrier lifetime which makes them attractive for high speed communication, whether in free space, through fiber or underwater. Gigabit data transmission can be achieved in free space by modulating the visible light from the laser with a pseudo-random bit sequence (PRBS), with recent results approaching 5 Gbit/s error free data transmission. By exploiting the low-loss in the blue part of the spectrum through water, data transmission experiments have also been conducted to show rates of 2.5 Gbit/s underwater. Different water types have been tested to monitor the effect of scattering and to see how this affects the overall transmission rate and distance. This is of great interest for communication with unmanned underwater vehicles (UUV) as the current method using acoustics is much slower and vulnerable to interception. These types of laser diodes can typically reach 50-100 mW of power which increases the length at which the data can be transmitted. This distance could be further improved by making use of high power laser arrays. Highly uniform GaN substrates with low defectivity allow individually addressable laser bars to be fabricated. This could ultimately increase optical power levels to 4 W for a 20-emitter array. Overall, the development of GaN laser diodes will play an important part in free space optical communications and will be vital in the advancement of security and defence applications

    Activation of intact bacteria and bacterial fragments mixed with agar as cloud droplets and ice crystals in cloud chamber experiments

    Get PDF
    Abstract. Biological particles, including bacteria and bacterial fragments, have been of much interest due to the special ability of some to nucleate ice at modestly low temperatures. This paper presents results from a recent study conducted on two strains of cultivated bacteria which suggest that bacterial fragments mixed with agar, and not whole bacterial cells, serve as cloud condensation nuclei (CCN). Due to the absence of whole bacteria cells in droplets, they are unable to serve as ice nucleating particles (INPs) in the immersion mode under the experimental conditions. Experiments were conducted at the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) cloud chamber at the Karlsruhe Institute of Technology (KIT) by injecting bacteria-containing aerosol samples into the cloud chamber and inducing cloud formation by expansion over a temperature range of −5 to −12 °C. Cloud droplets and ice crystals were sampled through a pumped counterflow virtual impactor inlet (PCVI) and their residuals were characterized with a single particle mass spectrometer (miniSPLAT). The size distribution of the overall aerosol was bimodal, with a large particle mode composed of intact bacteria and a mode of smaller particles composed of agar mixed with bacterial fragments that were present in higher concentrations. Results from three expansions with two bacterial strains indicate that the cloud droplet residuals had virtually the same size distribution as the smaller particle size mode and had mass spectra that closely matched those of agar and bacterial fragments. The characterization of ice residuals that were sampled through an ice-selecting PCVI (IS-PCVI) also shows that the same particles that activate to form cloud droplets, bacteria fragments mixed with agar, were the only particle type observed in ice residuals. </jats:p

    Efficient optical activation of ion-implanted Zn acceptors in GaN by annealing under 10 kbar N2 overpressure

    Get PDF
    We continue our investigations into the optical activation of Zn-implanted GaN annealed under ever higher N2 overpressure. The samples studied were epitaxial GaN/sapphire layers of good optical quality which were implanted with a 1013 cm−2 dose of Zn+ ions at 200 keV, diced into equivalent pieces and annealed under 10 kbar of N2. The N2 overpressure permitted annealing at temperatures up to 1250°C for 1 hr without GaN decomposition. The blue Zn-related photoluminescence (PL) signal rises sharply with increasing anneal temperature. The Zn-related PL intensity in the implanted sample annealed at 1250°C exceeded that of the epitaxially doped GaN:Zn standard proving that high temperature annealing of GaN under kbar N2 overpressure can effectively remove implantation damage and efficiently activate implanted dopants in GaN. We propose a lateral LED device which could be fabricated using ion implanted dopants activated by high temperature annealing at high pressur

    Enhancement of piezoelectricity in a mixed ferroelectric

    Full text link
    We use first-principles density-functional total energy and polarization calculations to calculate the piezoelectric tensor at zero temperature for both cubic and simple tetragonal ordered supercells of Pb_3GeTe_4. The largest piezoelectric coefficient for the tetragonal configuration is enhanced by a factor of about three with respect to that of the cubic configuration. This can be attributed to both the larger strain-induced motion of cations relative to anions and higher Born effective charges in the tetragonal case. A normal mode decomposition shows that both cation ordering and local relaxation weaken the ferroelectric instability, enhancing piezoelectricity.Comment: 5 pages, revtex, 2 eps figure
    corecore