9 research outputs found

    Molecular and Functional Characterization of Three Different Postzygotic Mutations in PIK3CA-Related Overgrowth Spectrum (PROS) Patients: Effects on PI3K/AKT/mTOR Signaling and Sensitivity to PIK3 Inhibitors

    Get PDF
    BACKGROUND PIK3CA-related overgrowth spectrum (PROS) include a group of disorders that affect only the terminal portion of a limb, such as type I macrodactyly, and conditions like fibroadipose overgrowth (FAO), megalencephaly-capillary malformation (MCAP) syndrome, congenital lipomatous asymmetric overgrowth of the trunk, lymphatic, capillary, venous, and combined-type vascular malformations, epidermal nevi, skeletal and spinal anomalies (CLOVES) syndrome and Hemihyperplasia Multiple Lipomatosis (HHML). Heterozygous postzygotic PIK3CA mutations are frequently identified in these syndromes, while timing and tissue specificity of the mutational event are likely responsible for the extreme phenotypic variability observed. METHODS: We carried out a combination of Sanger sequencing and targeted deep sequencing of genes involved in the PI3K/AKT/mTOR pathway in three patients (1 MCAP and 2 FAO) to identify causative mutations, and performed immunoblot analyses to assay the phosphorylation status of AKT and P70S6K in affected dermal fibroblasts. In addition, we evaluated their ability to grow in the absence of serum and their response to the PI3K inhibitors wortmannin and LY294002 in vitro. RESULTS AND CONCLUSION: Our data indicate that patients' cells showed constitutive activation of the PI3K/Akt pathway. Of note, PI3K pharmacological blockade resulted in a significant reduction of the proliferation rate in culture, suggesting that inhibition of PI3K might prove beneficial in future therapies for PROS patients

    A homozygous frameshift mutation in the ESCO2 gene: evidence of intertissue and interindividual variation in NMD efficiency

    No full text
    Roberts syndrome (RS) is a rare disorder characterized by tetraphocomelia and several other clinical features. Cells from RS patients exhibit characteristic premature separation of heterochromatic region of many chromosomes and abnormalities in cell cycle. Mutations in the ESCO2 gene have recently been identified in 20 RS families. We performed mutational analysis of the ESCO2gene in two fetuses diagnosed with RS and their normal parents. in both fetuses, we identified homozygosity for the c. 745_746delGT mutation, while the non-consanguineous parents were both heterozygous for the same mutation. Considering the position of the mutation identified, we carried out qualitative and quantitative real-time ESCO2 cDNA analysis on RNA isolated from CVS-stromal cells in one fetus, amniocytes in the second fetus, and lymphocytes from the heterozygous parents. The results of this analysis showed that despite the presence of a premature termination codon (PTC) 112 nucleotides upstream of the next exon3-exon4 junction, the mutant ESCO2 mRNA was present in both fetuses, albeit at low levels, indicating a partial resistance to nonsense mediated decay (NMD). Interestingly, when cells derived from the two fetuses were treated with an inhibitor of translation, they revealed the presence of tissue and individual variability in NMD efficiency, despite the identical mutational status. The existence of such a variation in the NMD efficiency could explain the broad intrafamilial and interfamilial variability in the clinical presentation of RS patients, and in other genetic diseases where nonsense mutations are responsible for most of the mutation load. Moreover, considering that a mutated full length mRNA was produced in both fetuses, we used Western blot analysis to demonstrate the absence of the ESCO2-truncated protein in cells derived from both fetuses and in a lymphoblastoid cell line derived from the parents

    Breakpoint determination of 15 large deletions in Peuts-Jeghers subjects.

    No full text
    The Peutz-Jeghers Syndrome (PJS) is an autosomal dominant polyposis disorder with increased risk of multiple cancers. STK11/LKB1 (hereafter named STK11) germline mutations account for the large majority of PJS cases whereas large deletions account for about 30% of the cases. We report here the first thorough molecular characterization of 15 large deletions identified in a cohort of 51 clinically well-characterized PJS patients. The deletions were identified by MLPA analysis and characterized by custom CGH-array and quantitative PCR to define their boundaries. The deletions, ranging from 2.9 to 180 kb, removed one or more loci contiguous to the STK11 gene in six patients, while partial STK11 gene deletions were present in the remaining nine cases. By means of DNA sequencing, we were able to precisely characterize the breakpoints in each case. Of the 30 breakpoints, 16 were located in Alu elements, revealing non-allelic homologous recombination (NAHR) as the putative mechanism for the deletions of the STK11 gene, which lays in a region with high Alu density. In the remaining cases, other mechanisms could be hypothesized, such as microhomology-mediated end-joining (MMEJ) or non-homologous end-joining (NHEJ). In conclusion we here demonstrated the non-random occurrence of large deletions associated with PJS. All our patients had a classical PJS phenotype, which shows that haploinsufficiency for SBNO2, C19orf26, ATP5D, MIDN, C19orf23, CIRBP, C19orf24,and EFNA2, does not apparently affect their clinical phenotype

    TWO NOVEL MUTATIONS AND A NEW STK11/LKB GENE ISOFORM IN PEUTZ-JEGHERS PATIENTS.

    No full text
    Peutz-Jeghers syndrome (PJS) is a rare autosomal dominantly inherited disorder with variable expression and incomplete penetrance characterized by mucocutaneous pigmentation, predisposition to hamartomatous intestinal polyposis, and various other neoplasms. It occurs in approximately 1 in 8,300 to 29,000 live births. In nearly 50% of patients PJS is caused by germ line mutations in the STK11/LKB1 serine/threonine kinase gene, the only kinase gene currently known to act as a tumor suppressor. We have performed a mutation search in the STK11/LKB1 gene in 8 sporadic cases and 3 PJS families using a combination of different screening techniques. We have identified four mutations, two of which I177N and the IVS2+1A->G, were previously unreported. We have also evaluated the presence of cDNA alterations by means of RT-PCR analysis and direct cDNA sequencing and have found two aberrant transcripts in a single PJS case despite the lack of any apparent genomic alteration. Finally, we report the presence of a novel STK11/LKB1 cDNA isoform observed in all the normal subjects studied as well as in the majority of the PJS patients

    Cancer risk associated with STK11/LKB1 germline mutations in Peutz-Jeghers syndrome patients: Results of an Italian multicenter study

    No full text
    BACKGROUND: Germline mutations in the STK11/LKB1 gene cause Peutz-Jeghers syndrome, an autosomal-dominantly inherited condition characterized by mucocutaneous pigmentation, hamartomatous gastrointestinal polyposis, and an increased risk for various malignancies. We here report the results of the first Italian collaborative study on Peutz-Jeghers syndrome. AIMS: To assess cancer risks in a large homogenous cohort of patients with Peutz-Jeghers syndrome, carrying, in large majority, an identified STK11/LKB1 mutation. METHODS: One-hundred and nineteen patients with Peutz-Jeghers syndrome, ascertained in sixteen different Italian centres, were enrolled in a retrospective cohort study. Relative and cumulative cancer risks and genotype-phenotype correlations were evaluated. RESULTS: 36 malignant tumours were found in 31/119 (29 STK11/LKB1 mutation carriers) patients. The mean age at first cancer diagnosis was 41 years. The relative overall cancer risk was 15.1 with a significantly higher risk (p<0.001) in females (22.0) than in males (8.6). Highly increased relative risks were present for gastrointestinal (126.2) and gynaecological cancers (27.7), in particular for pancreatic (139.7) and cervical cancer (55.6). The Kaplan-Meier estimates for overall cumulative cancer risks were 20%, 43%, 71%, and 89%, at age 40, 50, 60 and 65 years, respectively. CONCLUSION: Peutz-Jeghers syndrome entails markedly elevated cancer risks, mainly for pancreatic and cervical cancers. This study provides a helpful reference for improving current surveillance protocols
    corecore