7 research outputs found

    RAGE and ICAM-1 differentially control leukocyte recruitment during acute inflammation in a stimulus-dependent manner

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The receptor for advanced glycation endproducts, RAGE, is involved in the pathogenesis of many inflammatory conditions, which is mostly related to its strong activation of NF-κB but also due to its function as ligand for the β<sub>2</sub>-integrin Mac-1. To further dissect the stimulus-dependent role of RAGE on leukocyte recruitment during inflammation, we investigated β<sub>2</sub>-integrin-dependent leukocyte adhesion in <it>RAGE<sup>-/- </sup></it>and <it>Icam1<sup>-/- </sup></it>mice in different cremaster muscle models of inflammation using intravital microscopy.</p> <p>Results</p> <p>We demonstrate that RAGE, but not ICAM-1 substantially contributes to N-formyl-methionyl-leucyl-phenylalanine (fMLP)-induced leukocyte adhesion in TNF-α-pretreated cremaster muscle venules in a Mac-1-dependent manner. In contrast, fMLP-stimulated leukocyte adhesion in unstimulated cremaster muscle venules is independent of RAGE, but dependent on ICAM-1 and its interaction with LFA-1. Furthermore, chemokine CXCL1-stimulated leukocyte adhesion in surgically prepared cremaster muscle venules was independent of RAGE but strongly dependent on ICAM-1 and LFA-1 suggesting a differential and stimulus-dependent regulation of leukocyte adhesion during inflammation in vivo.</p> <p>Conclusion</p> <p>Our results demonstrate that RAGE and ICAM-1 differentially regulate leukocyte adhesion in vivo in a stimulus-dependent manner.</p

    Besondere Patientengruppen in der Notaufnahme

    No full text
    Besondere Patientengruppen stellen Notfallpflegende vor besondere Herausforderungen. Das Kapitel beschäftigt sich mit der Diversität der Patienten und Patientinnen in der Notaufnahme und deren multifaktoriellen Herausforderungen

    Mutants of <i>Mycobacterium smegmatis</i> unable to grow at acidic pH in the presence of the protonophore carbonyl cyanide <i>m</i>-chlorophenylhydrazone

    No full text
    Mycobacterium smegmatis is able to grow and survive at acidic pH, and exhibits intracellular pH homeostasis under these conditions. In this study, the authors have identified low proton permeability of the cytoplasmic membrane, and high cytoplasmic buffering capacity, as determinants of intrinsic acid resistance of M. smegmatis. To identify genes encoding proteins involved in protecting cells from acid stress, a screening method was developed using the electrogenic protonophore carbonyl cyanide m-chlorophenylhydrazone (CCCP). CCCP was used to suppress intrinsic acid resistance of M. smegmatis. The screen involved exposing cells to pH 5.0 in the presence of CCCP, and survivors were rescued at various time intervals on solid medium at pH 7.5. Cells capable of responding to intracellular acidification (due to CCCP-induced proton equilibration) will survive longer under these conditions than acid-sensitive cells. From a total pool of 5000 transposon (Tn611) insertion mutants screened, eight acid-sensitive M. smegmatis mutants were isolated. These acid-sensitive mutants were unable to grow at pH 5.0 in the presence of 1-5 microM CCCP, a concentration not lethal to the wild-type strain mc2155. The DNA flanking the site of Tn611 was identified using marker rescue in Escherichia coli, and DNA sequencing to identify the disrupted locus. Acid-sensitive mutants of M. smegmatis were disrupted in genes involved in phosphonate/phosphite assimilation, methionine biosynthesis, the PPE multigene family, xenobiotic-response regulation and lipid biosynthesis. Several of the acid-sensitive mutants were also defective in stationary-phase survival, suggesting that overlapping stress protection systems exist in M. smegmatis

    Enzymatic Activity of HPGD in Treg Cells Suppresses Tconv Cells to Maintain Adipose Tissue Homeostasis and Prevent Metabolic Dysfunction

    No full text
    Regulatory T cells (Treg cells) are important for preventing autoimmunity and maintaining tissue homeostasis, but whether Treg cells can adopt tissue- or immune-context-specific suppressive mechanisms is unclear. Here, we found that the enzyme hydroxyprostaglandin dehydrogenase (HPGD), which catabolizes prostaglandin E-2 (PGE(2)) into the metabolite 15-keto PGE(2), was highly expressed in Treg cells, particularly those in visceral adipose tissue (VAT). Nuclear receptor peroxisome proliferator-activated receptor-gamma (PPAR gamma)-induced HPGD expression in VAT Treg cells, and consequential Treg-cell-mediated generation of 15-keto PG E2 suppressed conventional T cell activation and proliferation. Conditional deletion of Hpgd in mouse Treg cells resulted in the accumulation of functionally impaired Treg cells specifically in VAT, causing local inflammation and systemic insulin resistance. Consistent with this mechanism, humans with type 2 diabetes showed decreased HPGD expression in Treg cells. These data indicate that HPGD-mediated suppression is a tissue- and context-dependent suppressive mechanism used by Treg cells to maintain adipose tissue homeostasis

    Biodegradation: Updating the Concepts of Control for Microbial Cleanup in Contaminated Aquifers

    No full text
    corecore