74 research outputs found

    Regulating the Regulators: The Post-Translational Code of Class I HDAC1 and HDAC2

    Get PDF
    Class I histone deacetylases (HDACs) are cellular enzymes expressed in many tissues and play crucial roles in differentiation, proliferation, and cancer. HDAC1 and HDAC2 in particular are highly homologous proteins that show redundant or specific roles in different cell types or in response to different stimuli and signaling pathways. The molecular details of this dual regulation are largely unknown. HDAC1 and HDAC2 are not only protein modifiers, but are in turn regulated by post-translational modifications (PTMs): phosphorylation, acetylation, ubiquitination, SUMOylation, nitrosylation, and carbonylation. Some of these PTMs occur and crosstalk specifically on HDAC1 or HDAC2, creating a rational “code” for a differential, context-related regulation. The global comprehension of this PTM code is central for dissecting the role of single HDAC1 and HDAC2 in physiology and pathology

    Targeting SUMO E1 to ubiquitin ligases: a viral strategy to counteract sumoylation.

    Get PDF
    SUMO-1 (small ubiquitin-related modifier-1) is a ubiquitin-like family member that is conjugated to its substrates through three discrete enzymatic steps, activation (involving the E1 enzyme (SAE1/SAE2)), conjugation (involving the E2 enzyme), and substrate modification (through the cooperation of the E2 and E3 protein ligases). The adenoviral protein Gam1 inactivates E1, both in vitro and in vivo, followed by SAE1/SAE2 degradation. We have shown here that Gam1 possesses a C-terminal SOCS domain that allows its interaction with two cellular cullin RING (really interesting new gene) ubiquitin ligases. We demonstrate that Gam1 is necessary for the recruitment of SAE1/SAE2 into Cul2/5-EloB/C-Roc1 ubiquitin ligase complexes and for subsequent SAE1 ubiquitylation and degradation. The degradation of SAE2 is not tightly related to Gam1 but is a consequent effect of SAE1 disappearance. These results reveal the mechanism by which a viral protein inactivates and subsequently degrades an essential cellular enzyme, arresting a key regulatory pathway

    PI3K/mTOR mediate mitogen-dependent HDAC1 phosphorylation in breast cancer: a novel regulation of estrogen receptor expression

    Get PDF
    Histone deacetylase 1 (HDAC1) is an important epigenetic controller involved in transcriptional regulation through modification of chromatin structure. Genetic and epigenetic changes and deregulation of signal transduction pathways have been implicated in the development of breast cancer. Downregulation of estrogen receptor α (ERα) expression is one of the mechanisms behind the acquisition of endocrine resistance. Sustained and increased hormone and growth factor receptor signaling in breast cancer cells contribute to resistance to endocrine therapy. Both HDACs and the PI3K/mTOR signaling pathway are becoming promising targets in breast cancer, reversing also acquired hormone resistance. Here we show how mitogens, activating the PI3K/mTOR pathway, trigger the phosphorylation of HDAC1 in breast cancer cells, which is completely dependent on the activity of the p70 S6 kinase (S6K1). Our findings show that S6K1, overexpressed in many breast cancers, controls HDAC1-dependent transcriptional regulation of ERα levels upon mitogenic stimuli, controlling HDAC1 recruitment to the ERα promoter. Furthermore, cell treatment with both mTOR and HDACs inhibitors shows an additive effect in inhibiting breast cancer proliferation. This confirms the novel cross-talk between the HDAC1 and PI3K pathways with clinical implications towards the treatment of this malignant disease

    The Polycomb Repressive Complex 2 Is a Potential Target of SUMO Modifications

    Get PDF
    The Polycomb Repressive Complex 2 (PRC2) functions as a transcriptional repressor through a mechanism that involves methylation of Histone H3 at lysine 27. The PRC2 complex activity is essential for cellular proliferation, development, and cell fate decisions. PRC2 target genes include important regulators of development and proliferation as well as tumor suppressor genes. Consistent with this, the activity of several Polycomb group (PcG) proteins is deregulated in human cancer suggesting an important role for PcGs in tumor development. Whereas the downstream functions of PcGs are well characterized, the mechanisms of their recruitment to target genes and the regulation of their activity are not fully understood.Here we show that the two PRC2 components SUZ12 and EZH2 are sumoylated in vitro and in vivo. Among several putative sumoylation sites we have mapped the major site of SUZ12 sumoylation. Furthermore, we show that SUZ12 interacts with the E2-conjugating enzyme UBC9 both in vitro and in vivo and that mutation of the SUZ12 sumoylation site does not abolish this binding. Finally, we provide evidence that the E3-ligase PIASXbeta interacts and enhances the sumoylation of SUZ12 in vivo suggesting that PIASXbeta could function as an E3-ligase for SUZ12.Taken together, our data identify sumoylation as a novel post-translational modification of components of the PRC2 complex, which could suggest a potential new mechanism to modulate PRC2 repressive activity. Further work aimed to identify the physiological conditions for these modifications will be required to understand the role of SUZ12 and EZH2 sumoylation in PcG-mediated epigenetic regulation of transcription

    Is precision medicine the solution to improve organ preservation in laryngeal/hypopharyngeal cancer? A position paper by the Preserve Research Group

    Get PDF
    In locally advanced (LA) laryngeal/hypopharyngeal squamous cell carcinoma (LHSCC), larynx preservation (LP) strategies aim at the cure of the disease while preserving a functional larynx, thus avoiding total laryngectomy and the associated impact on the quality of life. In the last decades, apart from transoral and open-neck organ preservation approaches, several non-surgical regimens have been investigated: radiotherapy alone, alternate, concurrent or sequential chemoradiation, and bioradiotherapy. Despite major progress, the identification of reliable and effective predictors for treatment response remains a clinical challenge. This review examines the current state of LP in LA-LHSCC and the need for predictive factors, highlighting the importance of the PRESERVE trial in addressing this gap. The PRESERVE trial represents a pivotal initiative aimed at finding the optimal therapy for laryngeal preservation specific to each patient through a retrospective analysis of data from previous LP trials and prospectively validating findings. The goal of the PRESERVE trial is to develop a comprehensive predictive classifier that integrates clinical, molecular, and multi-omics data, thereby enhancing the precision and efficacy of patient selection for LP protocols

    Detection and sequence analysis of a nickel-induced mutation in a retroviral model system

    No full text
    We have developed a novel way to assess the mutagenicity of environmentally important metal carcinogens, such as nickel, by creating a positive selection system based upon the conditional expression of a retroviral transforming gene. The target gene is the v-mos gene in MuSVts110, a murine retrovirus possessing a growth temperature dependent defect in expression of the transforming gene due to viral RNA splicing. In normal rat kidney cells infected with MuSVts110 (6m2 cells), splicing of the MuSVts110 RNA to form the mRNA from which the transforming protein, p85\sp{\rm gag-mos}, is translated is growth-temperature dependent, occurring at 33 C and below but not at 39 C and above. This splicing defect is mediated by cis-acting viral sequences. Nickel chloride treatment of 6m2 cells followed by growth at 39 C, allowed the selection of revertant cells which constitutively express p85\sp{\rm gag-mos} due to stable changes in the viral RNA splicing phenotype, suggesting that nickel, a carcinogen whose mutagenicity has not been well established, could induce mutations in mammalian genes. We also show by direct sequencing of PCR-amplified integrated MuSVts110 DNA from a 6m2 nickel-revertant cell line that the nickel-induced mutation affecting the splicing phenotype is a cis-acting 70-base duplication of a region of the viral DNA surrounding the 3\sp\prime splice site. These findings provide the first example of the molecular basis for a nickel-induced DNA lesion and establish the mutagenicity of this potent carcinogen

    High Risk-Human Papillomavirus in HNSCC: Present and Future Challenges for Epigenetic Therapies

    No full text
    Head and Neck Squamous Cell Carcinoma (HNSCC) is a highly heterogeneous group of tumors characterized by an incidence of 650,000 new cases and 350,000 deaths per year worldwide and a male to female ratio of 3:1. The main risk factors are alcohol and tobacco consumption and Human Papillomavirus (HPV) infections. HNSCC cases are divided into two subgroups, the HPV-negative (HPV−) and the HPV-positive (HPV+) which have different clinicopathological and molecular profiles. However, patients are still treated with the same therapeutic regimens. It is thus of utmost importance to characterize the molecular mechanisms underlying these differences to find new biomarkers and novel therapeutic targets towards personalized therapies. Epigenetic alterations are a hallmark of cancer and can be exploited as both promising biomarkers and potential new targets. E6 and E7 HPV oncoviral proteins besides targeting p53 and pRb, impair the expression and the activity of several epigenetic regulators. While alterations in DNA methylation patterns have been well described in HPV+ and HPV− HNSCC, accurate histone post-translational modifications (hPTMs) characterization is still missing. Herein, we aim to provide an updated overview on the impact of HPV on the hPTMs landscape in HNSCC. Moreover, we will also discuss the sex and gender bias in HNSCC and how the epigenetic machinery could be involved in this process, and the importance of taking into account sex and/or gender also in this field

    High Risk-Human Papillomavirus in HNSCC: Present and Future Challenges for Epigenetic Therapies

    No full text
    Head and Neck Squamous Cell Carcinoma (HNSCC) is a highly heterogeneous group of tumors characterized by an incidence of 650,000 new cases and 350,000 deaths per year worldwide and a male to female ratio of 3:1. The main risk factors are alcohol and tobacco consumption and Human Papillomavirus (HPV) infections. HNSCC cases are divided into two subgroups, the HPV-negative (HPV−) and the HPV-positive (HPV+) which have different clinicopathological and molecular profiles. However, patients are still treated with the same therapeutic regimens. It is thus of utmost importance to characterize the molecular mechanisms underlying these differences to find new biomarkers and novel therapeutic targets towards personalized therapies. Epigenetic alterations are a hallmark of cancer and can be exploited as both promising biomarkers and potential new targets. E6 and E7 HPV oncoviral proteins besides targeting p53 and pRb, impair the expression and the activity of several epigenetic regulators. While alterations in DNA methylation patterns have been well described in HPV+ and HPV− HNSCC, accurate histone post-translational modifications (hPTMs) characterization is still missing. Herein, we aim to provide an updated overview on the impact of HPV on the hPTMs landscape in HNSCC. Moreover, we will also discuss the sex and gender bias in HNSCC and how the epigenetic machinery could be involved in this process, and the importance of taking into account sex and/or gender also in this field
    corecore