17 research outputs found

    Epidermal Growth Factor Receptor Gene in Primary Tumor and Metastatic Sites from Non-small Cell Lung Cancer

    Get PDF
    IntroductionThe majority of patients with non-small cell lung cancer (NSCLC) develop distant metastases. Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors are capable of reducing brain and adrenal metastases. However, the EGFR status may be discordant between primary NSCLC and the corresponding metastases.MethodsUsing fluorescence in situ hybridization (FISH) analysis, the EGFR gene status was evaluated in a series of 38 cerebral or adrenal metastases collected from two institutions and in the corresponding primary tumors. Also, EGFR mutational analysis was performed using direct sequencing on the cerebral metastases.ResultsEGFR FISH was positive in 28% of the primary tumors and in 45% of the metastases (p < 0.05). Among the seven cases FISH-positive at the metastatic site but negative in the primary tumor, six were brain metastases, and one was an adrenal metastasis; all were polysomic for chromosome 7, none were amplified. No EGFR mutations have been found in the cerebral metastases.ConclusionBecause the molecular asset of EGFR may change during the metastatic progression of NSCLC to brain (but not to adrenal), the selection of patients with brain metastasis for specific targeted therapies by EGFR FISH analysis should be performed on metastatic lesions rather than on their corresponding primary tumors

    Retrospective study testing next generation sequencing of selected cancer-associated genes in resected prostate cancer

    Get PDF
    PURPOSE: Prostate cancer (PCa) has a highly heterogeneous outcome. Beyond Gleason Score, Prostate Serum Antigen and tumor stage, nowadays there are no biological prognostic factors to discriminate between indolent and aggressive tumors. The most common known genomic alterations are the TMPRSS-ETS translocation and mutations in the PI3K, MAPK pathways and in p53, RB and c-MYC genes. The aim of this retrospective study was to identify by next generation sequencing the most frequent genetic variations (GVs) in localized and locally advanced PCa underwent prostatectomy and to investigate their correlation with clinical-pathological variables and disease progression. RESULTS: Identified non-synonymous GVs included TP53 p.P72R (78% of tumors), two CSFR1 SNPs, rs2066934 and rs2066933 (70%), KDR p.Q472H (67%), KIT p.M541L (28%), PIK3CA p.I391M (19%), MET p.V378I (10%) and FGFR3 p.F384L/p.F386L (8%). TP53 p.P72R, MET p.V378I and CSFR1 SNPs were significantly associated with the HI risk group, TP53 and MET variations with T≥T2c. FGFR3 p.F384L/p.F386L was correlated with T≤T2b. MET p.V378I mutation, detected in 20% of HI risk patients, was associated with early biochemical recurrence. EXPERIMENTAL DESIGN: Nucleic acids were obtained from tissue samples of 30 high (HI) and 30 low-intermediate (LM) risk patients, according to D'Amico criteria. Genomic DNA was explored with the Ion_AmpliSeq_Cancer_Hotspot_Panel_v.2 including 50 cancer-associated genes. GVs with allelic frequency (AF) ≥10%, affecting protein function or previously associated with cancer, were correlated with clinical-pathological variables. CONCLUSION: Our results confirm a complex mutational profile in PCa, supporting the involvement of TP53, MET, FGFR3, CSF1R GVs in tumor progression and aggressiveness

    Basaloid adenocarcinoma. A new variant of pulmonary adenocarcinoma.

    No full text
    The 2004 WHO classification of lung tumours recognised basaloid carcinoma as a variant of squamous and large cell carcinoma. We report a unique case of primary pulmonary adenocarcinoma with a basaloid component. An 82-year-old man underwent pulmonary lobectomy for a 2.8 cm tumour. The patient is disease-free 13 months after diagnosis. Histologically, an invasive carcinoma having a glandular and a solid component was observed. The former was an adenocarcinoma with mucus containing spaces lined by columnar mucinous cells and basaloid cells. The solid component was an organoid proliferation of basaloid-type cells, as in cutaneous basal cell carcinoma. Basaloid cells, but not mucinous cells, were immunoreactive for high molecular weight cytokeratins (CK), CK 7 and, focally, for TTF-1. High Ki67 index, p53 and EGFR expression were also found. This tumour is unique in several respects: (1) The solid areas resemble a conventional basaloid carcinoma, except for the presence of small mucin-containing spaces. (2) The mucinous adenocarcinoma areas contain two layers of columnar and basaloid cells. (3) Both components are neoplastic based on cell morphology, invasive properties and phenotypic profile. These findings indicate that a basaloid variant of adenocarcinoma is also existing in the spectrum of basaloid carcinomas of the lung

    mTOR pathway activation in multiple myeloma cell lines and primary tumour cells: pomalidomide enhances cytoplasmic-nuclear shuttling of mTOR protein

    No full text
    mTOR is a protein kinase that plays a central role in regulating critical cellular processes. We evaluated the activation and cellular localization of the mTOR pathway in multiple myeloma (MM) and analyzed the role of pomalidomide in regulating mTOR. By immunohistochemistry cytoplasmic p-mTOR stained positive in 57 out 101 (57.6%) cases with a nuclear p-mTOR localization in 14 out 101 samples (13.8%). In the 70 MM samples analyzed for the entire pathway, p-mTOR expression significantly correlated with p-AKT, p-P70S6K, and p-4E-BP1 suggesting that the AKT/mTOR pathway is activated in a subset of MM patients. Immunofluorescence assays demonstrated that mTOR protein is distributed throughout the cytoplasm and the nucleus at baseline in MM cell lines and in plasma cells of 13 MM patients and that pomalidomide facilitated the shift of the mTOR protein in the nucleus. By western blotting, treatment with pomalidomide increased nuclear mTOR and p-mTOR expression levels in the nucleus with a concomitant decrease of the cytoplasmic fractions while does not seem to affect significantly AKT phosphorylation status. In MM cells the anti-myeloma activity of pomalidomide may be mediated by the regulation of the mTOR pathway

    Human ASH1 expression in prostate cancer with neuroendocrine differentiation

    No full text
    Neuroendocrine differentiation in prostate cancer correlates with overall prognosis and disease progression after androgen-deprivation therapy, although its specific mechanisms are currently poorly understood. A role of Notch pathway has been reported in determining neuroendocrine phenotype of normal and neoplastic tissues. The aim of this study was to analyze whether this pathway might affect neuroendocrine differentiation in prostate cancer. Human achaete-scute homolog 1 (hASH1), a pivotal member of the Notch pathway, was investigated in 80 prostate cancers selected and grouped according to chromogranin A immunohistochemistry, as follows: prostate cancers without neuroendocrine differentiation, untreated (25 cases); prostate cancers with neuroendocrine differentiation, untreated (40 cases); prostate cancers with previous androgen-deprivation therapy, all having neuroendocrine differentiation (15 cases). Human ASH1 protein was analyzed by immunohistochemistry, whereas the presence of hASH1 mRNA transcripts was investigated on paraffin material by real-time PCR. By immunohistochemistry, hASH1 was colocalized with chromogranin A in neuroendocrine cells of normal prostatic gland. It was absent in all but one prostate cancers without neuroendocrine differentiation, whereas it was positive in 25% of prostate cancers with neuroendocrine differentiation/untreated, with a significant correlation with the extent of neuroendocrine features (P=0.02). Moreover, comparing untreated and treated prostate cancers with neuroendocrine differentiation, a positive association with androgen-deprivation therapy was observed (P=0.01). In prostate cancers with neuroendocrine differentiation, RNA analysis confirmed the association of higher transcript levels in androgen deprivation-treated compared with untreated patients (P=0.01). In addition, hASH1 mRNA analysis in microdissected chromogranin A-positive and chromogranin A-negative areas within the same tumor demonstrated a two- to sevenfold increase of hASH1 mRNA expression in chromogranin A-positive tumor cell populations
    corecore