41 research outputs found

    IRAS results on outer galaxy star formation

    Get PDF
    An infrared defined (60 micron) sample of IRAS sources were systematically studied in order to investigate star formation in the outer Galaxy. Five percent of the sample are point sources with IRAS spectra that suggest the emission is from a dust shell surrounding a mature star. Ninety five percent have spectra where flux density strictly rises with wavelength. The sources are extended, and it is shown that Point Source Catalog fluxes seriously underestimate total fluxes. CO kinematic distances were reliably assigned to two thirds of the sources. Most of the infrared luminosities correspond to B spectral types. Six cm continuum emission were detected from all sources inferred to have spectral type B1 or earlier. The combined IRAS/CO/6 cm data show these sources are young, moderately massive stars that are embedded in interstellar clouds. The young embedded sources define a distinct band in an IRAS color-colar diagram. Normal IRAS galaxies fall in the same band, consistent with the interpretation that their infrared emission is due to star formation

    The Power of SOFIA/FORCAST in Estimating Internal Luminosities of Low Mass Class 0/I Protostars

    Get PDF
    With the Stratospheric Observatory for Infrared Astronomy (SOFIA) routinely operating science flights, we demonstrate that observations with the Faint Object infraRed CAmera for the SOFIA Telescope (FORCAST) can provide reliable estimates of the internal luminosities, LintL_{\rm int}, of protostars. We have developed a technique to estimate LintL_{\rm int} using a pair of FORCAST filters: one "short-wavelength" filter centered within 19.7-25.3 μ\mum, and one "long-wavelength" filter within 31.5-37.1 μ\mum. These LintL_{\rm int} estimates are reliable to within 30-40% for 67% of protostars and to within a factor of 2.3-2.6 for 99% of protostars. The filter pair comprised of F25.3μ\mum and F37.1μ\mum achieves the best sensitivity and most constrained results. We evaluate several assumptions that could lead to systematic uncertainties. The OH5 dust opacity matches observational constraints for protostellar environments best, though not perfectly; we find that any improved dust model will have a small impact of 5-10% on the LintL_{\rm int} estimates. For protostellar envelopes, the TSC84 model yields masses that are twice those of the Ulrich model, but we conclude this mass difference does not significantly impact results at the mid-infrared wavelengths probed by FORCAST. Thus, FORCAST is a powerful instrument for luminosity studies targeting newly discovered protostars or suspected protostars lacking detections longward of 24 μ\mum. Furthermore, with its dynamic range and greater angular resolution, FORCAST may be used to characterize protostars that were either saturated or merged with other sources in previous surveys using the Spitzer Space Telescope or Herschel Space Observatory.Comment: 17 pages, 9 figures. Accepted for publication in Ap

    IRAS colors of VLA identified objects in the galaxy

    Get PDF
    Infrared Astronomy Satellite (IRAS) sources found within 4 degrees of l = 125 deg, b = 2 deg on the 3rd HCON 60 micron Sky Brightness Images were observed at the Very Large Array (VLA). Regions were to be identified where massive stars are forming by looking for small areas of radio continuum emissions. The IRAS sources could be divided into three groups by their IRAS 12 micron/25 micron and 60 micron/100 micron color. The group identified with star forming regions contained essentially all of the objects with extended radio emission. In all of these cases the extended radio emission showed a morphology consistent with the identification of these objects as HII regions. The conclusion drawn is that star formation regions can be distinguished from other objects by their infrared colors

    A correlation between the IRAS infrared cirrus at 60 or 100 microns and neutral atomic hydrogen in the outer galaxy

    Get PDF
    A linear correlation was found between the infrared cirrus at 100 or 60 microns and neutral atomic hydrogen near the galactic plane. Infrared Astronomy Satellite (IRAS) Sky Brightness images were compared to the 0.5 deg resolution Weaver-Williams HI survey in two regions of the outer Galaxy near l = 125 deg and l = 215 deg. The dust temperature inferred is nearly uniform and in reasonable agreement with theoretical predictions of thermal dust emission

    An IRAS Hires study of low mass star formation in the Taurus molecular ring

    Get PDF
    The Taurus molecular cloud supposedly has no star clusters but only isolated star formation. However, the Infrared Astronomical Satellite (IRAS) shows us that a small star cluster is currently forming in Taurus. Most of the sources are deeply embedded and are probably low-mass protostars. We use High Resolution (HiRes) images of the IRAS data from the Infrared Processing and Analysis Center (IPAC) to look for additional infrared members of the cluster. We also investigate the question of whether the infrared emission matches predictions for protostellar sources by examining whether the dust emission is resolved on scales of one arcminute (approx. 10(exp 17) cm). With the exception of a luminous visible star, HD 29647, we find that the sources L1527, TMC1A, TMC1, TMC1C, tMR1, and IC2087 are unresolved in the HiRes images at 60 microns. Further analysis of IC2087 shows that it is unresolved at all four IRAS wavelengths

    Science with High Spatial Resolution Far-Infrared Data

    Get PDF
    The goal of this workshop was to discuss new science and techniques relevant to high spatial resolution processing of far-infrared data, with particular focus on high resolution processing of IRAS data. Users of the maximum correlation method, maximum entropy, and other resolution enhancement algorithms applicable to far-infrared data gathered at the Infrared Processing and Analysis Center (IPAC) for two days in June 1993 to compare techniques and discuss new results. During a special session on the third day, interested astronomers were introduced to IRAS HIRES processing, which is IPAC's implementation of the maximum correlation method to the IRAS data. Topics discussed during the workshop included: (1) image reconstruction; (2) random noise; (3) imagery; (4) interacting galaxies; (5) spiral galaxies; (6) galactic dust and elliptical galaxies; (7) star formation in Seyfert galaxies; (8) wavelet analysis; and (9) supernova remnants

    Science Communication Versus Science Education: The Graduate Student Scientist As A K-12 Classroom Resource

    Get PDF
    Science literacy is a major goal of science educational reform (NRC, 1996; AAAS, 1998; NCLB Act, 2001). Some believe that teaching science only requires pedagogical content knowledge (PCK) (Shulman, 1987). Others believe doing science requires knowledge of the methodologies of scientific inquiry (NRC, 1996). With these two mindsets, the challenge for science educators is to create models that bring the two together. The common ground between those who teach science and those who do science is science communication, an interactive process that galvanizes dialogue among scientists, teachers, and learners in a rich ambience of mutual respect and a common, inclusive language of discourse (Stocklmayer, 2001). The dialogue between science and non-science is reflected in the polarization that separates those who do science and those who teach science, especially as it plays out everyday in the science classroom. You may be thinking, why is this important? It is vital because, although not all science learners become scientists, all K-12 students are expected to acquire science literacy, especially with the implementation of the No Child Left Behind Act of 2001 (NCLB). Students are expected to acquire the ability to follow the discourse of science as well as connect the world of science to the context of their everyday life if they plan on moving to the next grade level, and in some states, to graduate from high school. This paper posits that science communication is highly effective in providing the missing link for K-12 students’ cognition in science and their attainment of science literacy. This paper will focus on the “Science For Our Schools” (SFOS) model implemented at California State University, Los Angeles (CSULA) as a project of the National Science Foundation’s GK-12 program, (NSF 2001) which has been a huge success in bridging the gap between those who “know” science and those who “teach” science. The SFOS model makes clear the distinctions that identify science, science communication, science education, and science literacy in the midst of science learning by bringing together graduate student scientists and science teachers to engage students in the two world’s dialogue in the midst of the school science classroom. The graduate student scientists and the science teachers worked as a team throughout the school year and became effective science communicators as they narrowed the gulf between the two worlds

    The Contribution of Ionizing Stars to the Far-Infrared and Radio Emission in the Galaxy

    Get PDF
    This is the first report of a new contract. However, this project represents ongoing work, so there are completed tasks as well as newly started tasks to report. The project involves the completion of the IRAS Galaxy Atlas (IGA), a large image database produced using data from the Infrared Astronomical Satellite (IRAS). In this phase, the project switches from the production and characterization of the IGA to its use in astronomical research studies of massive star formation. The research utilizes the IGA as well as two other large data sets being produced by research partners

    A First Look at the Auriga-California Giant Molecular Cloud With Herschel and the CSO: Census of the Young Stellar Objects and the Dense Gas

    Get PDF
    We have mapped the Auriga/California molecular cloud with the Herschel PACS and SPIRE cameras and the Bolocam 1.1 mm camera on the Caltech Submillimeter Observatory (CSO) with the eventual goal of quantifying the star formation and cloud structure in this Giant Molecular Cloud (GMC) that is comparable in size and mass to the Orion GMC, but which appears to be forming far fewer stars. We have tabulated 60 compact 70/160um sources that are likely pre-main-sequence objects and correlated those with Spitzer and WISE mid-IR sources. At 1.1 mm we find 18 cold, compact sources and discuss their properties. The most important result from this part of our study is that we find a modest number of additional compact young objects beyond those identified at shorter wavelengths with Spitzer. We also describe the dust column density and temperature structure derived from our photometric maps. The column density peaks at a few x 10^22 cm^-2 (N_H2) and is distributed in a clear filamentary structure along which nearly all the pre-main-sequence objects are found. We compare the YSO surface density to the gas column density and find a strong non-linear correlation between them. The dust temperature in the densest parts of the filaments drops to ~10K from values ~ 14--15K in the low density parts of the cloud. We also derive the cumulative mass fraction and probability density function of material in the cloud which we compare with similar data on other star-forming clouds.Comment: in press Astrophysical Journal, 201
    corecore