122 research outputs found

    Relativistic calculation of the two-photon decay rate of highly-excited ionic states

    Get PDF
    Based on quantum electrodynamics, we reexamine the two-photon decay of one-electron atoms. Special attention is paid to the calculation of the (two-photon) total decay rates which can be viewed as the imaginary part of the two-loop self-energy. We argue that our approach can easily be applied to the cases with a virtual state having an intermediate energy between the initial and the final state of the decay process leading, thus, to the resonance peaks in the two-photon energy distribution. In order to illustrate our approach, we obtain fully relativistic results, resolved into electric and magnetic multipole components, for the two-photon decay rates of the 3S_{1/2} -> 1S_{1/2} transition in neutral hydrogen as well as in various hydrogen-like ions.Comment: 11 pages, LaTe

    The effect of bound state dressing in laser assisted radiative recombination

    Full text link
    We present a theoretical study on the recombination of a free electron into the ground state of a hydrogen-like ion in the presence of an external laser field. Emphasis is placed on the effects caused by the laser dressing of the residual ionic bound state. To investigate how this dressing affects the total and angle-differential cross section of laser assisted radiative recombination (LARR) we apply first-order perturbation theory and the separable Coulomb-Volkov-continuum ansatz. Using this approach detailed calculations were performed for low-ZZ hydrogen like ions and laser intensities in the range from IL=1011W/cm2I_L=10^{11}\text{W/cm}^2 to IL=1013W/cm2I_L=10^{13}\text{W/cm}^2. It is seen that the total cross section as a function of the laser intensity is remarkably affected by the bound state dressing. Moreover the laser dressing becomes manifest as asymmetries in the angular distribution and the (energy) spectrum of the emitted recombination photons.Comment: 9 pages, 5 figure

    Bessel beams of two-level atoms driven by a linearly polarized laser field

    Full text link
    We study Bessel beams of two-level atoms that are driven by a linearly polarized laser field. Starting from the Schroedinger equation, we determine the states of two-level atoms in a plane-wave field respecting propagation directions both of the atom and the field. For such laser-driven two-level atoms, we construct Bessel beams beyond the typical paraxial approximation. We show that the probability density of these atomic beams obtains a non-trivial, Bessel-squared-type behavior and can be tuned under the special choice of the atom and laser parameters, such as the nuclear charge, atom velocity, laser frequency, and propagation geometry of the atom and laser beams. Moreover, we spatially and temporally characterize the beam of hydrogen and selected (neutral) alkali-metal atoms that carry non-zero orbital angular momentum (OAM). The proposed spatiotemporal Bessel states (i) are able to describe, in principle, twisted states of any two-level system which is driven by the radiation field and (ii) have potential applications in atomic, nuclear processes and quantum communication.Comment: 13 pages, 5 figures, appeared as a EPJD highlight on Thursday, 01 August 2013 http://www.epj.org/index.php?option=com_content&view=article&id=684%3Aepjd-highlight-novel-beams-made-of-twisted-atoms&catid=112%3Aepj-d&Itemid=466&lang=e

    Hyperfine-induced effects on the linear polarization of the Kα1\alpha_1 emission from helium-like ions

    Full text link
    The linear polarization of the characteristic photon emission from few-electron ions is studied for its sensitivity with regard to the nuclear spin and magnetic moment of the ions. Special attention is paid, in particular, to the Kα1\alpha_1 (1s 2p_{3/2} ^{1,3}P_{1,2} \to 1s^2 ^1S_0) decay of selected helium-like ions following the radiative electron capture into initially hydrogen-like species. Based on the density matrix theory, a unified description is developed that includes both, the many-electron and hyperfine interactions as well as the multipole-mixing effects arising from the expansion of the radiation field. It is shown that the polarization of the Kα1\alpha_1 line can be significantly affected by the mutipole mixing between the leading M2M2 and hyperfine-induced E1E1 components of 1s2p ^3P_2, F_i \to 1s^2 ^1S_0, F_f transitions. This E1E1-M2M2 mixing strongly depends on the nuclear properties of the considered isotopes and can be addressed experimentally at existing heavy-ion storage rings

    Using gravitational light deflection in optical cavities for laser frequency stabilization

    Full text link
    We theoretically investigate the propagation of light in the presence of a homogeneous gravitational field. To model this, we derive the solutions of the wave equation in Rindler spacetime, which account for gravitational redshift and light deflection. The developed theoretical framework is used to explore the propagation of plane light waves in a horizontal Fabry-Perot cavity. We pay particular attention to the cavity output power. It is shown that this power depends not only on the input frequency, but also on the vertical position of a detector. We state that the height-dependent detector signal arising from the cavity internal light deflection effect (CILD-effect) also opens a new alternative way to frequency stabilization in Earth-based laser experiments and to study gravitational light deflection at laboratory scales.Comment: 9 pages, 4 figures, 1 tabl

    The off-resonant dielectronic recombination in a collision of an electron with a heavy hydrogen-like ion

    Full text link
    The recombination of an electron with an (initially) hydrogen-like ion is investigated. The effect of the electron-electron interaction is treated rigorously to the first order in the parameter 1/Z and within the screening-potential approximation to higher orders in 1/Z, with Z being the nuclear charge number. The two-electron correction contains the dielectronic-recombination part, which contributes to the process not only under the resonance condition for the projectile energy but also in the regions far from resonances. The mechanism of the off-resonant dielectronic recombination is studied in detail.Comment: 9 pages, 2 tables, 3 figure

    Photon-photon polarization correlations as a tool for studying parity non-conservation in heliumlike Uranium

    Full text link
    Due to electron-nucleus weak interaction, atomic bound states with different parities turn out to be mixed. We discuss a prospect for measuring the mixing parameter between the nearly degenerate metastable states 1s_{1/2} 2s_{1/2} : J = 0 and 1s_{1/2} 2p_{1/2} : J = 0 in heliumlike Uranium. Our analysis is based on the polarization properties of the photons emitted in the two-photon decays of such states.Comment: 3 figure

    Unified Treatment of Even and Odd Anharmonic Oscillators of Arbitrary Degree

    Get PDF
    We present a unified treatment, including higher-order corrections, of anharmonic oscillators of arbitrary even and odd degree. Our approach is based on a dispersion relation which takes advantage of the PT-symmetry of odd potentials for imaginary coupling parameter, and of generalized quantization conditions which take into account instanton contributions. We find a number of explicit new results, including the general behaviour of large-order perturbation theory for arbitrary levels of odd anharmonic oscillators, and subleading corrections to the decay width of excited states for odd potentials, which are numerically significant.Comment: 5 pages, RevTe

    Relativistic theory of the double photoionization of helium-like atoms

    Full text link
    A fully relativistic calculation of the double photoionization of helium-like atoms is presented. The approach is based on the partial-wave representation of the Dirac continuum states and accounts for the retardation in the electron-electron interaction as well as the higher-order multipoles of the absorbed photon. The electron-electron interaction is taken into account to the leading order of perturbation theory. The relativistic effects are shown to become prominent already for the medium-Z ions, changing the shape and the asymptotic behaviour of the photon energy dependence of the ratio of the double-to-single photoionization cross section

    Atomic ionization by twisted photons: Angular distribution of emitted electrons

    Full text link
    We investigate the angular distribution of electrons that are emitted in the ionization of hydrogen-like ions by twisted photons. Analysis is performed based on the first-order perturbation theory and the non-relativistic Schr\"odinger equation. Special attention is paid to the dependence of the electron emission pattern on the impact parameter b of the ion with respect to the centre of the twisted wave front. In order to explore such a dependence, detailed calculations were carried out for the photoionization of the 1s ground and 2 py excited states of neutral hydrogen atoms. Based on these calculations, we argue that for relatively small impact parameters the electron angular distributions may be strongly affected by altering the position of the atom within the wave front. In contrast, if the atom is placed far from the front centre, the emission pattern of the electrons is independent on the impact parameter b and resembles that observed in the photoionization by plane wave photons.Comment: 23 pages, 6 figure
    • …
    corecore