32 research outputs found

    Probing the inter-layer exciton physics in a MoS2_2/MoSe2_2/MoS2_2 van der Waals heterostructure

    Full text link
    Stacking atomic monolayers of semiconducting transition metal dichalcogenides (TMDs) has emerged as an effective way to engineer their properties. In principle, the staggered band alignment of TMD heterostructures should result in the formation of inter-layer excitons with long lifetimes and robust valley polarization. However, these features have been observed simultaneously only in MoSe2_2/WSe2_2 heterostructures. Here we report on the observation of long lived inter-layer exciton emission in a MoS2_2/MoSe2_2/MoS2_2 trilayer van der Waals heterostructure. The inter-layer nature of the observed transition is confirmed by photoluminescence spectroscopy, as well as by analyzing the temporal, excitation power and temperature dependence of the inter-layer emission peak. The observed complex photoluminescence dynamics suggests the presence of quasi-degenerate momentum-direct and momentum-indirect bandgaps. We show that circularly polarized optical pumping results in long lived valley polarization of inter-layer exciton. Intriguingly, the inter-layer exciton photoluminescence has helicity opposite to the excitation. Our results show that through a careful choice of the TMDs forming the van der Waals heterostructure it is possible to control the circular polarization of the inter-layer exciton emission.Comment: 19 pages, 3 figures. Just accepted for publication in Nano Letters (http://pubs.acs.org/doi/10.1021/acs.nanolett.7b03184

    Intervalley Scattering of Interlayer Excitons in a MoS2_2/MoSe2_2/MoS2_2 Heterostructure in High Magnetic Field

    Get PDF
    Degenerate extrema in the energy dispersion of charge carriers in solids, also referred to as valleys, can be regarded as a binary quantum degree of freedom, which can potentially be used to implement valleytronic concepts in van der Waals heterostructures based on transition metal dichalcogenides. Using magneto-photoluminescence spectroscopy, we achieve a deeper insight into the valley polarization and depolarization mechanisms of interlayer excitons formed across a MoS2_2/MoSe2_2/MoS2_2 heterostructure. We account for the non-trivial behavior of the valley polarization as a function of the magnetic field by considering the interplay between exchange interaction and phonon mediated intervalley scattering in a system consisting of Zeeman-split energy levels. Our results represent a crucial step towards the understanding of the properties of interlayer excitons, with strong implications for the implementation of atomically thin valleytronic devices.Comment: just accepted in Nano Letters, DOI: 10.1021/acs.nanolett.8b0148

    Site-selective measurement of coupled spin pairs in an organic semiconductor

    Full text link
    From organic electronics to biological systems, understanding the role of intermolecular interactions between spin pairs is a key challenge. Here we show how such pairs can be selectively addressed with combined spin and optical sensitivity. We demonstrate this for bound pairs of spin-triplet excitations formed by singlet fission, with direct applicability across a wide range of synthetic and biological systems. We show that the site-sensitivity of exchange coupling allows distinct triplet pairs to be resonantly addressed at different magnetic fields, tuning them between optically bright singlet (S=0) and dark triplet, quintet (S=1,2) configurations: this induces narrow holes in a broad optical emission spectrum, uncovering exchange-specific luminescence. Using fields up to 60 T, we identify three distinct triplet-pair sites, with exchange couplings varying over an order of magnitude (0.3-5 meV), each with its own luminescence spectrum, coexisting in a single material. Our results reveal how site-selectivity can be achieved for organic spin pairs in a broad range of systems.Comment: 8 pages, article, 7 pages, supporting informatio

    Waveguide Coupled Resonance Fluorescence from On-Chip Quantum Emitter

    Get PDF
    Resonantly driven quantum emitters offer a very promising route to obtain highly coherent sources of single photons required for applications in quantum information processing (QIP). Realizing this for on-chip scalable devices would be important for scientific advances and practical applications in the field of integrated quantum optics. Here we report on-chip quantum dot (QD) resonance fluorescence (RF) efficiently coupled into a single-mode waveguide, a key component of a photonic integrated circuit, with a negligible resonant laser background and show that the QD coherence is enhanced by more than a factor of 4 compared to off-resonant excitation. Single-photon behavior is confirmed under resonant excitation, and fast fluctuating charge dynamics are revealed in autocorrelation g(2) measurements. The potential for triggered operation is verified in pulsed RF. These results pave the way to a novel class of integrated quantum-optical devices for on-chip quantum information processing with embedded resonantly driven quantum emitters

    Vibrational Properties in Highly Strained Hexagonal Boron Nitride Bubbles

    No full text
    Hexagonal boron nitride (hBN) is widely used as a protective layer for few-atom-thick crystals and heterostructures (HSs), and it hosts quantum emitters working up to room temperature. In both instances, strain is expected to play an important role, either as an unavoidable presence in the HS fabrication or as a tool to tune the quantum emitter electronic properties. Addressing the role of strain and exploiting its tuning potentiality require the development of efficient methods to control it and of reliable tools to quantify it. Here we present a technique based on hydrogen irradiation to induce the formation of wrinkles and bubbles in hBN, resulting in remarkably high strains of ∼2%. By combining infrared (IR) near-field scanning optical microscopy and micro-Raman measurements with numerical calculations, we characterize the response to strain for both IR-active and Raman-active modes, revealing the potential of the vibrational properties of hBN as highly sensitive strain probes

    Probing the Interlayer Exciton Physics in a MoS2/MoSe2/MoS2 van der Waals Heterostructure

    No full text
    International audienceStacking atomic monolayers of semiconducting transition metal dichalcogenides (TMDs) has emerged as an effective way to engineer their properties. In principle, the staggered band alignment of TMD heterostructures should result in the formation of interlayer excitons with long lifetimes and robust valley polarization. However, these features have been observed simultaneously only in MoSe2/WSe2 heterostructures. Here we report on the observation of long-lived interlayer exciton emission in a MoS2/MoSe2/MoS2 trilayer van der Waals heterostructure. The interlayer nature of the observed transition is confirmed by photoluminescence spectroscopy, as well as by analyzing the temporal, excitation power, and temperature dependence of the interlayer emission peak. The observed complex photoluminescence dynamics suggests the presence of quasi-degenerate momentum-direct and momentum-indirect bandgaps. We show that circularly polarized optical pumping results in long-lived valley polarization of interlayer exciton. Intriguingly, the interlayer exciton photoluminescence has helicity opposite to the excitation. Our results show that through a careful choice of the TMDs forming the van der Waals heterostructure it is possible to control the circular polarization of the interlayer exciton emission

    Comparison Between Electronic and Traditional Chest Drainage Systems: A Multicenter Randomized Study

    No full text
    Background: Air leak is the major factor that influences the permanence of the chest tube and the in-hospital length of stay (LOS) among patients undergoing lung resections. The aim of this study was to determine whether the use of digital chest drain systems, compared with traditional ones, reduced the duration of chest drainage and postoperative in-hospital LOS in patients undergoing video-assisted thoracoscopic (VATS) lobectomy. Methods: The study was a prospective, randomized, multicenter trial. Patients undergoing VATS lobectomy were randomized in 2 groups, receiving a digital drain system or a traditional one and managed accordingly to the protocol. Results: Among 503 patients who fulfilled inclusion criteria and were randomized, 38 dropped out after randomization. Finally, 465 patients were analyzed, of whom 204 used the digital device and 261 the traditional one. In the digital group, there was a significantly shorter median chest tube duration of 3 postoperative days (interquartile range [IQR], 2-4 days) vs 4 postoperative days (IQR, 3-4 days; P = .001) and postoperative in-hospital LOS of 4 days (IQR, 3-6 days) vs 5 days (IQR, 4-6 days; P = .035). Analysis of predictors for increased duration of air leaks showed a relationship with male sex (P = .039), forced expiratory volume in 1 second percentage (P = .004), forced vital capacity percentage (P = .03), and presence of air leaks at the end of surgery (P = .001). Conclusions: In patients undergoing VATS lobectomy, the use of a digital drainage system allows an earlier removal of the chest drain compared with the traditional system, leading to a shorter in-hospital LOS
    corecore