7 research outputs found

    Dietary squalene increases high density lipoprotein-cholesterol and paraoxonase 1 and decreases oxidative stress in mice

    Get PDF
    Background and Purpose: Squalene, the main hydrocarbon in the unsaponifiable fraction of virgin olive oil, is involved in cholesterol synthesis and it has been reported to own antiatherosclerotic and antiesteatosic effects. However, the squalene’s role on lipid plasma parameters and the influence of genotype on this effect need to be addressed. Experimental Approaches: Three male mouse models (wild-type, Apoa1- and Apoe- deficient) were fed chow semisynthetic diets enriched in squalene to provide a dose of 1 g/kg during 11 weeks. After this period, their plasma parameters and lipoprotein profiles were analyzed. Key Results: Squalene administration at a dose of 1 g/kg showed decreased reactive oxygen species in lipoprotein fractions independently of the animal background and caused an specific increase in high density lipoprotein (HDL)-cholesterol levels, accompanied by an increase in phosphatidylcholine and paraoxonase 1 and no changes in apolipoproteins A1 and A4 in wild-type mice. In these mice, the cholesterol increase was due to its esterified form and associated with an increased hepatic expression of Lcat. These effects were not observed in absence of apolipoprotein A1. The increases in HDL- paraoxonase 1 were translated into decreased plasma malondialdehyde levels depending on the presence of Apolipoprotein A1. Conclusions and Implications: Dietary squalene promotes changes in HDL- cholesterol and paraoxonase 1 and decreases reactive oxygen species in lipoproteins and plasma malondialdehyde levels, providing new benefits of its intake that might contribute to explain the properties of virgin olive oil, although the phenotype related to apolipoproteins A1 and E may be particularly relevant

    Hepatic subcellular distribution of squalene changes according to the experimental setting

    Get PDF
    Squalene is the main unsaponifiable component of virgin olive oil, the main source of dietary fat in Mediterranean diet, traditionally associated with a less frequency of cardiovascular diseases. In this study, two experimental approaches were used. In the first, New Zealand rabbits fed for 4 weeks with a chow diet enriched in 1% sunflower oil for the control group, and in 1% of sunflower oil and 0.5% squalene for the squalene group. In the second, APOE KO mice received either Western diet or Western diet enriched in 0.5% squalene for 11 weeks. In both studies, liver samples were obtained and analyzed for their squalene content by gas chromatography-mass spectrometry. Hepatic distribution of squalene was also characterized in isolated subcellular organelles. Our results show that dietary squalene accumulates in the liver and a differential distribution according to studied model. In this regard, rabbits accumulated in cytoplasm within small size vesicles, whose size was not big enough to be considered lipid droplets, rough endoplasmic reticulum, and nuclear and plasma membranes. On the contrary, mice accumulated in large lipid droplets, and smooth reticulum fractions in addition to nuclear and plasma membranes. These results show that the squalene cellular localization may change according to experimental setting and be a starting point to characterize the mechanisms involved in the protective action of dietary squalene in several pathologies

    Dietary avian proteins are comparable to soybean proteins on the atherosclerosis development and fatty liver disease in apoe-deficient mice

    Get PDF
    Background and aim: The type and amount of dietary protein has become a topic of re-newed interest in light of their involvement in metabolic diseases, atherosclerosis and thrombosis. However, little attention has been devoted to the effect of avian proteins despite their wide human consumption. The aim was to investigate the influence of chicken and turkey as sources of protein compared with that of soybean on atherosclerosis and fatty liver disease. Methods and results: To this purpose, male and female Apoe-deficient were fed purified Western diets differing in their protein sources for 12 weeks. After this period, blood, liver, aortic tree and heart base samples were taken for analyses of plasma lipids and atherosclerosis. Plasma triglycerides, non-esterified fatty acids, esterified cholesterol levels and radical oxygen species in lipoproteins changed depending on the diet and sex. Females consuming the turkey protein-containing diet showed decreased athero-sclerotic foci, as evidenced by the en face atherosclerosis analyses. The presence of macrophages and smooth muscle cells in plaques were not modified, and no changes were observed in hepatic lipid droplets in the studied groups either. Paraoxonase activity was higher in the group consuming turkey protein without sex differences, but only in females, it was significantly associated with aor-tic lesion areas. Conclusions: Compared to soybean protein, the consumption of avian proteins depending on sex resulted in similar or lower atherosclerosis development and comparable hepatic steatosis. © 2021 by the authors. Licensee MDPI, Basel, Switzerland

    Conditional KCa3.1-transgene induction in murine skin produces pruritic eczematous dermatitis with severe epidermal hyperplasia and hyperkeratosis

    Get PDF
    Ion channels have recently attracted attention as potential mediators of skin disease. Here, we explored the consequences of genetically encoded induction of the cell volume-regulating Ca2+-activated KCa3.1 channel (Kcnn4) for murine epidermal homeostasis. Doxycycline-treated mice harboring the KCa3.1+-transgene under the control of the reverse tetracycline-sensitive transactivator (rtTA) showed 800-fold channel overexpression above basal levels in the skin and solid KCa3.1-currents in keratinocytes. This overexpression resulted in epidermal spongiosis, progressive epidermal hyperplasia and hyperkeratosis, itch and ulcers. The condition was accompanied by production of the pro-proliferative and pro-inflammatory cytokines, IL-ß1 (60-fold), IL-6 (33-fold), and TNFa (26-fold) in the skin. Treatment of mice with the KCa3.1-selective blocker, Senicapoc, significantly suppressed spongiosis and hyperplasia, as well as induction of IL-ß1 (-88%) and IL-6 (-90%). In conclusion, KCa3.1-induction in the epidermis caused expression of pro-proliferative cytokines leading to spongiosis, hyperplasia and hyperkeratosis. This skin condition resembles pathological features of eczematous dermatitis and identifies KCa3.1 as a regulator of epidermal homeostasis and spongiosis, and as a potential therapeutic target

    Dietary Squalene Induces Cytochromes Cyp2b10 and Cyp2c55 Independently of Sex, Dose, and Diet in Several Mouse Models

    Get PDF
    Scope: To investigate the effects of squalene, the main hydrocarbon present in extra virgin olive oil, on liver transcriptome in different animal models and to test the influence of sex on this action and its relationship with hepatic lipids. Methods and Results: To this purpose, male C57BL/6J Apoe-deficient mice are fed a purified Western diet with or without squalene during 11 weeks and hepatic squalene content is assessed, so are hepatic lipids and lipid droplets. Hepatic transcriptomic changes are studied and confirmed by RT-qPCR. Dietary characteristics and influence of squalene doses are tested in Apoe-deficient on purified chow diets with or without squalene. These diets are also given to Apoa1 and wild-type mice on C57BL/6J background and to C57BL/6J xOla129 Apoe-deficient mice. Squalene supplementation increases its hepatic content without differences among sexes and hormonal status. The Cyp2b10 and Cyp2c55 gene expressions are significantly up-regulated by the squalene intake in all models, with independence of sex, sexual hormones, dietary fat content, genetic background and dose, and in Apoe-deficient mice consuming extra-virgin olive oil. Conclusion: Hepatic squalene increases the expression of these cytochromes and their changes in virgin olive oil diets may be due to their squalene content

    In Sickness and In Health: Interpersonal Risk and Resilience in Cardiovascular Disease

    No full text
    corecore