8 research outputs found

    In vivo ADP-ribosylation of proteins in mouse L1210 cells.

    Get PDF

    Acidification of rat TRPV1 alters the kinetics of capsaicin responses

    Get PDF
    TRPV1 (vanilloid receptor 1) receptors are activated by a variety of ligands such as capsaicin, as well as by acidic conditions and temperatures above 42°C. These activators can enhance the potency of one another, shifting the activation curve for TRPV1 to the left. In this study, for example, we observed an approximately 10-fold shift in the capsaicin EC(50 )(640 nM to 45 nM) for rat TRPV1 receptors expressed in HEK-293 cells when the pH was lowered from 7.4 to 5.5. To investigate potential causes for this shift in capsaicin potency, the rates of current activation and deactivation of whole-cell currents were measured in individual cells exposed to treatments of pH 5.5, 1 μM capsaicin or in combination. Acidic pH was found to both increase the activation rate and decrease the deactivation rate of capsaicin-activated currents providing a possible mechanism for the enhanced potency of capsaicin under acidic conditions. Utilizing a paired-pulse protocol, acidic pH slowed the capsaicin deactivation rate and was readily reversible. Moreover, the effect could occur under modestly acidic conditions (pH 6.5) that did not directly activate TRPV1. When TRPV1 was maximally activated by capsaicin and acidic pH, the apparent affinity of the novel and selective capsaicin-site competitive TRPV1 antagonist, A-425619, was reduced ~35 fold. This shift was overcome by reducing the capsaicin concentration co-applied with acidic pH. Since inflammation is associated with tissue acidosis, these findings enhance understanding of TRPV1 receptor responses in inflammatory pain where tissue acidosis is prevalent

    Coexpression and activation of TRPV1 suppress the activity of the KCNQ2/3 channel

    Get PDF
    Transient receptor potential vanilloid 1 (TRPV1) is a ligand-gated nonselective cation channel expressed predominantly in peripheral nociceptors. By detecting and integrating diverse noxious thermal and chemical stimuli, and as a result of its sensitization by inflammatory mediators, the TRPV1 receptor plays a key role in inflammation-induced pain. Activation of TRPV1 leads to a cascade of pro-nociceptive mechanisms, many of which still remain to be identified. Here, we report a novel effect of TRPV1 on the activity of the potassium channel KCNQ2/3, a negative regulator of neuronal excitability. Using ion influx assays, we revealed that TRPV1 activation can abolish KCNQ2/3 activity, but not vice versa, in human embryonic kidney (HEK)293 cells. Electrophysiological studies showed that coexpression of TRPV1 caused a 7.5-mV depolarizing shift in the voltage dependence of KCNQ2/3 activation compared with control expressing KCNQ2/3 alone. Furthermore, activation of TRPV1 by capsaicin led to a 54% reduction of KCNQ2/3-mediated current amplitude and attenuation of KCNQ2/3 activation. The inhibitory effect of TRPV1 appears to depend on Ca2+ influx through the activated channel followed by Ca2+-sensitive depletion of phosphatidylinositol 4,5-bisphosphate and activation of protein phosphatase calcineurin. We also identified physical interactions between TRPV1 and KCNQ2/3 coexpressed in HEK293 cells and in rat dorsal root ganglia neurons. Mutation studies established that this interaction is mediated predominantly by the membrane-spanning regions of the respective proteins and correlates with the shift of KCNQ2/3 activation. Collectively, these data reveal that TRPV1 activation may deprive neurons from inhibitory control mediated by KCNQ2/3. Such neurons may thus have a lower threshold for activation, which may indirectly facilitate TRPV1 in integrating multiple noxious signals and/or in the establishment or maintenance of chronic pain

    Nicotinic Acetylcholine Receptor-Mediated [ 3

    No full text
    corecore