2 research outputs found

    Long-Range Coupling of Toroidal Moments for the Visible

    No full text
    Dynamic toroidal multipoles are the third independent family of elementary electromagnetic sources in addition to electric and magnetic multipoles. Whereas the dipole–dipole coupling in electric and magnetic multipole families has been well studied, such fundamental coupling effects in the toroidal multipole family have not yet been experimentally investigated. Here we propose a plasmonic decamer nanocavity structure to realize transverse coupling between magnetic toroidal dipoles. The coupling effect was investigated both experimentally and theoretically, by means of electron energy-loss spectroscopy and energy-filtered transmission electron microscopy, together with finite-difference time-domain calculations. We observe that the coupling causes a reorientation of the magnetic moment loops surrounding the initial toroidal moments. This coupling results in three eigenstates of this toroidal system. The underlying coupling mechanism is qualitatively demonstrated. Our investigations pave the way toward a better understanding of coupling phenomena of toroidal moments and will bias applications in the long-range ordering of moments in metamaterials, e.g., for transfer of electromagnetic energy using toroidal moments (by analogy with chain metallic waveguides)

    Reflection and Phase Matching in Plasmonic Gold Tapers

    No full text
    We investigate different dynamic mechanisms, reflection and phase matching, of surface plasmons in a three-dimensional single-crystalline gold taper excited by relativistic electrons. Plasmonic modes of gold tapers with various opening angles from 5° to 47° are studied both experimentally and theoretically, by means of electron energy-loss spectroscopy and finite-difference time-domain numerical calculations, respectively. Distinct resonances along the taper shaft are observed in tapers independent of opening angles. We show that, despite their similarity, the origin of these resonances is different at different opening angles and results from a competition between two coexisting mechanisms. For gold tapers with large opening angles (above ∼20°), phase matching between the electron field and that of higher-order angular momentum modes of the taper is the dominant contribution to the electron energy-loss because of the increasing interaction length between electron and the taper near-field. In contrast, reflection from the taper apex dominates the EELS contrast in gold tapers with small opening angles (below ∼10°). For intermediate opening angles, a gradual transition of these two mechanisms was observed
    corecore