41 research outputs found

    The Buffer-Gas Positron Accumulator and Resonances in Positron-Molecule Interactions

    Get PDF
    This is a personal account of the development of our buffer-gas positron trap and the new generation of cold beams that these traps enabled. Dick Drachman provided much appreciated advice to us from the time we started the project. The physics underlying trap operation is related to resonances (or apparent resonances) in positron-molecule interactions. Amusingly, experiments enabled by the trap allowed us to understand these processes. The positron-resonance "box score" to date is one resounding "yes," namely vibrational Feshbach resonances in positron annihilation on hydrocarbons; a "probably" for positron-impact electronic excitation of CO and NZ;an d a "maybe" for vibrational excitation of selected molecules. Two of these processes enabled the efficient operation of the trap, and one almost killed it in infancy. We conclude with a brief overview of further applications of the trapping technology discussed here, such as "massive" positron storage and beams with meV energy resolution

    Positron annihilation on large molecules

    Get PDF

    Positron and positronium interactions with Cu

    Get PDF
    The configuration-interaction (CI) method is used to investigate the interactions of positrons and positronium with copper at low energies. The calculations were performed within the framework of the fixed-core approximation with semiempirical polarization potentials used to model dynamical interactions between the active particles and the (1s-3d) core. Initially, calculations upon the e(+)Li system were used to refine the numerical procedures and highlighted the extreme difficulties of using an orthodox CI calculation to describe the e(+)Li system. The positron binding energy of e(+) Cu derived from a CI calculation which included electron and positron orbitals with l less than or equal to 18 was. 0.005 12 hartree while the spin-averaged annihilation rate was 0.507 x 10(9) s(-1). The configuration basis used for the bound-state calculation was also used as a part of the trial wave function for a Kohn variational calculation of positron-copper scattering. The positron-copper system has a scattering length of about 13.1a(0) and the annihilation parameter Z(eff) at threshold was 72.9. The dipole polarizability of the neutral copper ground state was computed and found to be 41.6a(0)(3). The structure of CuPs was also studied with the CI method and it was found to have a binding energy of 0.0143 hartree and an annihilation rate of similar to2 x 10(9) s(-1)

    Configuration-interaction calculations of positron binding to zinc and cadmium

    Get PDF
    The configuration-interaction method is applied to the study of positronic zinc (e+Zn) and positronic cadmium (e+Cd). The estimated binding energies and annihilation rates were 0.00373 hartree and 0.42×109 sec-1 for e+Zn and 0.006 10 hartree and 0.56×109 sec-1 for e+Cd. The low-energy elastic cross section and Zeff were estimated from a model potential that was tuned to the binding energies and annihilation rates. Since the scattering lengths were positive (14.5a0 for Zn and 11.6a0 for Cd) the differential cross sections are larger at backward angles than at forward angles just above threshold. The possibilities of measuring differential cross sections to confirm positron binding to these atoms is discussed

    A portable positron accumulator for antihydrogen formation

    Full text link
    A pulsed source of positrons has been developed which may be useful for antihydrogen ( ) formation because it is portable when compared to accelerator-based sources. This positron accumulator uses a Penning-style trap to collect moderated positrons from a radioactive source. The positron pulses may be emitted with repetition rates in the range of 50–1000 Hz, which is appropriate for production schemes involving laser-induced recombination. Bunching techniques may be used to vary the width of the positron pulses over the range 30–120 ns (FWHM) to match the width of the antiproton and/or laser pulses. The efficiency of the accumulator increases from ∼ 10% at 100 Hz to ∼ 50% at 1000 Hz. 250 Hz the efficiency is ∼ 25% and the accumulator has delivered up to 8 e + /pulse per mCi of positron activity. This translates into ∼ 1.2 × 10 5 e + /pulse for a 100 Ci 58 Co source.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42929/1/10751_2006_Article_BF02316711.pd
    corecore