9 research outputs found

    Predicting Multi-Joint Kinematics of the Upper Limb from EMG Signals Across Varied Loads with a Physics-Informed Neural Network

    Full text link
    In this research, we present an innovative method known as a physics-informed neural network (PINN) model to predict multi-joint kinematics using electromyography (EMG) signals recorded from the muscles surrounding these joints across various loads. The primary aim is to simultaneously predict both the shoulder and elbow joint angles while executing elbow flexion-extension (FE) movements, especially under varying load conditions. The PINN model is constructed by combining a feed-forward Artificial Neural Network (ANN) with a joint torque computation model. During the training process, the model utilizes a custom loss function derived from an inverse dynamics joint torque musculoskeletal model, along with a mean square angle loss. The training dataset for the PINN model comprises EMG and time data collected from four different subjects. To assess the model's performance, we conducted a comparison between the predicted joint angles and experimental data using a testing data set. The results demonstrated strong correlations of 58% to 83% in joint angle prediction. The findings highlight the potential of incorporating physical principles into the model, not only increasing its versatility but also enhancing its accuracy. The findings could have significant implications for the precise estimation of multi-joint kinematics in dynamic scenarios, particularly concerning the advancement of human-machine interfaces (HMIs) for exoskeletons and prosthetic control systems

    Modeling and parametric optimization of 3D tendon-sheath actuator system for upper limb soft exosuit

    Full text link
    This paper presents an analysis of parametric characterization of a motor driven tendon-sheath actuator system for use in upper limb augmentation for applications such as rehabilitation, therapy, and industrial automation. The double tendon sheath system, which uses two sets of cables (agonist and antagonist side) guided through a sheath, is considered to produce smooth and natural-looking movements of the arm. The exoskeleton is equipped with a single motor capable of controlling both the flexion and extension motions. One of the key challenges in the implementation of a double tendon sheath system is the possibility of slack in the tendon, which can impact the overall performance of the system. To address this issue, a robust mathematical model is developed and a comprehensive parametric study is carried out to determine the most effective strategies for overcoming the problem of slack and improving the transmission. The study suggests that incorporating a series spring into the system's tendon leads to a universally applicable design, eliminating the need for individual customization. The results also show that the slack in the tendon can be effectively controlled by changing the pretension, spring constant, and size and geometry of spool mounted on the axle of motor
    corecore