3,818 research outputs found

    Structure of the twin-arginine signal-binding protein DmsD from Escherichia coli

    Get PDF
    The translocation of folded proteins via the twin-arginine translocation (Tat) pathway is regulated to prevent the futile export of inactive substrate. DmsD is part of a class of cytoplasmic chaperones that play a role in preventing certain redox proteins from premature transport. DmsD from Escherichia coli has been crystallized in space group P4_12_12, with unit-cell parameters a = b = 97.45, c = 210.04 Ã…, in the presence of a small peptide. The structure has been solved by molecular replacement to a resolution of 2.4 Ã… and refined to an R factor of 19.4%. There are four molecules in the asymmetric unit that may mimic a higher order structure in vivo. There appears to be density for the peptide in a predicted binding pocket, which lends support to its role as the signal-recognition surface for this class of proteins

    Do Alternative Therapies Have a Role in Autism?

    Get PDF
    Interventions considered to be branches of Complementary & Alternative Medicine (CAM) for autism are on the rise. Many new treatments have emerged & traditional beliefs of Ayurveda, Yoga, Behavioral therapy, Speech therapy and Homoeopathy have gained popularity and advocacy among parents. It is imperative that data supporting new treatments should be scrutinized for scientific study design, clinical safety, and scientific validity, before embarking on them as modes of therapy. Practitioners take care in explaining the rationale behind the various approaches that they practice, it is important to indicate possible limitations too during the initial clinical examination and interactive session. Clinicians must remember that parents may have different beliefs regarding the effectiveness of treatment since their information is derived more from the ‘hear-say’ route when they compare benefits/effects of CAM therapies on other children and often underestimate differential tolerance for treatment risks. It is thus significant that practitioners do not assume a "don't ask, don't tell" posture. The scientific validation and support for many interventions is incomplete and very different from the recommendations of the American Academy of Pediatrics Policy Statement. In this article, we discuss the various modes of CAM and their utilities and limitations in relation to autism

    Academic Audit and Quality Assurance in Higher Education

    Get PDF
    The role of higher education institutions is reflected in its learning outcomes. The learning outcomes contribute to develop quality professionals by enhancing competency in subject knowledge and intellectual capability, grooming professionalism and employability skills. Still further it contributes to emotional and social maturity, sound character, sharp business acumen, strong scientific temper and strategic thinking among the learners. This could be materialized only through imparting comprehensive, continually enhanced and global quality professional education supported by a sound quality management system. Quality policy contributes to institutionalizing the quality assurance processes. Commitment to providing quality teaching and learning through well designed and systematic curriculum delivery using multitude of learning experiences is at the core of this policy. A variety of quality assurance processes are institutionalized focusing around teacher quality, curriculum delivery and pedagogy, research and training, skill development of students, orientation programmes for overall personality development and broad range of activities which equip the students to face challenges and take up risks with courage. Academic Audit gives feed-back on its efficiency. The observations from the audit are utilised for institutional improvement

    Computational binding mechanism of Mycobacterium tuberculosis UDP-NAG enolpyruvyl transferase (MurA) with inhibitors fosfomycin, cyclic disulfide analog RWJ-3981, pyrazolopyrimidine analog RWJ-110192, purine analog RWJ-140998, 5-sulfonoxy-anthranilic aci

    Get PDF
    Worldwide, tuberculosis (TB) remains the most frequent and important infectious disease causing morbidity and death. One-third of the world's population is infected with Mycobacterium tuberculosis (Mtb), the etiologic agent of TB. In this context, TB is in the top three, with malaria and HIV being the leading causes of death from a single infectious agent, and about two million deaths are attributable to TB annually. The bacterial enzyme MurA catalyzes the transfer of enolpyruvate from phosphoenolpyruvate (PEP) to uridine diphospho-N-acetylglucosamine (UNAG), which is the first committed step of bacterial cell wall biosynthesis. In this work, 3D structural model of Mtb-MurA enzyme has been developed, for the first time, by homology modeling and molecular dynamics simulation techniques. The model provided clear insight in its structure features, i.e. substrate binding pocket, and common docking site. Multiple sequence alignment and 3D structure model provided the putative substrate binding pocket of Mtb-MurA with respect to E.coli MurA. This analysis was helpful in identifying the binding sites and molecular function of the MurA homologue. Molecular docking study was performed on this 3D structural model, using different classes of inhibitors like fosfomycin, cyclic disulfide analog RWJ-3981, pyrazolopyrimidine analog RWJ-110192, purine analog RWJ-140998, 5-sulfonoxy-anthranilic acid derivatives T6361, T6362 and the results showed that the 5-sulfonoxyanthranilic acid derivatives is showed best interaction compared with other inhibitor, taking in to this we also design a new efficient analogs of T6361 and T6362 which are showed even better interaction with Mtb-MurA than the parental5-sulfonoxy-anthranilic acid derivatives. Further the comparative molecular electrostatic potential and cavity depth analysis of Mtb-MurA suggested several important differences in its substrate and inhibitor binding pocket. Such differences could be exploited in the future for designing of a more specific inhibitor for Mtb-MurA enzym

    Estimation of State of Charge of Battery Used In Electric Vehicles With Wireless Battery Management System

    Get PDF
    This research paper presents a comprehensive investigation into the development and analysis of a wireless battery management system (BMS) using MATLAB Simulink. The primary objective of this study is to create an efficient, reliable, and scalable BMS that caters to the demands of various applications, such as electric vehicles, grid energy storage, and portable electronics. Our methodology involves designing and simulating key BMS components, including state estimation algorithms, fault detection mechanisms, and communication protocols, within the MATLAB Simulink environment. The paper first elucidates the motivation for adopting wireless technology in BMS, emphasizing its advantages over traditional wired systems. Subsequently, we explore the intricacies of the proposed wireless BMS architecture, detailing the implementation of essential features such as state-of-charge estimation, fault diagnosis, and thermal management. We also address the challenges associated with wireless communication, including latency, security, and energy efficiency, by incorporating robust communication protocols and power management strategies. Through rigorous simulations, we demonstrate the efficacy of the proposed wireless BMS, showcasing its ability to ensure optimal performance, safety, and longevity of battery packs. The outcomes of this research not only contribute to the advancement of BMS technology but also pave the way for further improvements in battery-powered systems. In conclusion, this paper offers a holistic perspective on wireless BMS design, emphasizing its potential to revolutionize energy management and extend the applications of battery technology in various domains

    Routing in Networks Using Genetic Algorithm

    Full text link
    With the increase in traffic, internet service providers are trying their best to provide maximum utilization of resources available. The current traffic load has to be taken into account for computation of paths in routing protocols. Network applications; require the shortest paths to be used for communication purposes. Addressing the selection of path, from a known source to destination is the basic aim of this paper. This paper proposes a method of calculating the shortest path for a network using a combination of Open shortest path first and Genetic Algorithm (OSGA). Genetic Algorithm is used in this paper for optimization of routing. It helps in enhancing the performance of the routers
    • …
    corecore