49 research outputs found

    Lung epithelial protein disulfide isomerase A3 (PDIA3) plays an important role in influenza infection, inflammation, and airway mechanics

    Full text link
    © 2019 Protein disulfide isomerases (PDI) are a family of redox chaperones that catalyze formation or isomerization of disulfide bonds in proteins. Previous studies have shown that one member, PDIA3, interacts with influenza A virus (IAV) hemagglutinin (HA), and this interaction is required for efficient oxidative folding of HA in vitro. However, it is unknown whether these host-viral protein interactions occur during active infection and whether such interactions represent a putative target for the treatment of influenza infection. Here we show that PDIA3 is specifically upregulated in IAV-infected mouse or human lung epithelial cells and PDIA3 directly interacts with IAV-HA. Treatment with a PDI inhibitor, LOC14 inhibited PDIA3 activity in lung epithelial cells, decreased intramolecular disulfide bonds and subsequent oligomerization (maturation) of HA in both H1N1 (A/PR8/34) and H3N2 (X31, A/Aichi/68) infected lung epithelial cells. These reduced disulfide bond formation significantly decreased viral burden, and also pro-inflammatory responses from lung epithelial cells. Lung epithelial-specific deletion of PDIA3 in mice resulted in a significant decrease in viral burden and lung inflammatory-immune markers upon IAV infection, as well as significantly improved airway mechanics. Taken together, these results indicate that PDIA3 is required for effective influenza pathogenesis in vivo, and pharmacological inhibition of PDIs represents a promising new anti-influenza therapeutic strategy during pandemic and severe influenza seasons

    Effects of bone marrow-derived cells on monocrotaline- and hypoxia-induced pulmonary hypertension in mice

    Get PDF
    BACKGROUND: Bone marrow -derived cells (BMDCs) can either limit or contribute to the process of pulmonary vascular remodeling. Whether the difference in their effects depends on the mechanism of pulmonary hypertension (PH) remains unknown. OBJECTIVES: We investigated the effect of BMDCs on PH induced in mice by either monocrotaline or exposure to chronic hypoxia. METHODS: Intravenous administration of the active monocrotaline metabolite (monocrotaline pyrrole, MCTp) to C57BL/6 mice induced PH within 15 days, due to remodeling of small distal vessels. Three days after the MCTp injection, the mice were injected with BMDCs harvested from femurs and tibias of donor mice treated with 5-fluorouracil (3.5 mg IP/animal) to deplete mature cells and to allow proliferation of progenitor cells. RESULTS: BMDCs significantly attenuated PH as assessed by reductions in right ventricular systolic pressure (20 ± 1 mmHg vs. 27 ± 1 mmHg, P ≤ 0.01), right ventricle weight/left ventricle+septum weight ratio (0.29 ± 0.02 vs. 0.36 ± 0.01, P ≤ 0.03), and percentage of muscularized vessels (26.4% vs. 33.5%, P ≤ 0.05), compared to control animals treated with irradiated BMDCs. Tracking cells from constitutive GFP-expressing male donor mice with anti-GFP antibodies or chromosome Y level measurement by quantitative real-time PCR showed BMDCs in the lung. In contrast, chronically hypoxic mice subjected to the same procedure failed to show improvement in PH. CONCLUSION: These results show that BMDCs limit pulmonary vascular remodeling induced by vascular injury but not by hypoxia

    Ingraft chimerism in lung transplantation - a study in a porcine model of obliterative bronchiolitis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bronchial epithelium is a target of the alloimmune response in lung transplantation, and intact epithelium may protect allografts from rejection and obliterative bronchiolitis (OB). Herein we study the influence of chimerism on bronchial epithelium and OB development in pigs.</p> <p>Methods</p> <p>A total of 54 immunosuppressed and unimmunosuppressed bronchial allografts were serially obtained 2-90 days after transplantation. Histology (H&E) was assessed and the fluorescence in situ hybridization (FISH) method for Y chromosomes using pig-specific DNA-label was used to detect recipient derived cells in graft epithelium and bronchial wall, and donor cell migration to recipient organs. Ingraft chimerism was studied by using male recipients with female donors, whereas donor cell migration to recipient organs was studied using female recipients with male donors.</p> <p>Results</p> <p>Early appearance of recipient-derived cells in the airway epithelium appeared predictive of epithelial destruction (<it>R </it>= 0.610 - 0.671 and <it>p </it>< 0.05) and of obliteration of the bronchial lumen (<it>R </it>= 0.698 and <it>p </it>< 0.01). All allografts with preserved epithelium showed epithelial chimerism throughout the follow-up. Antirejection medication did not prevent, but delayed the appearance of Y chromosome positive cells in the epithelium (<it>p </it>< 0.05), or bronchial wall (<it>p </it>< 0.05).</p> <p>Conclusions</p> <p>In this study we demonstrate that early appearance of Y chromosomes in the airway epithelium predicts features characteristic of OB. Chimerism occurred in all allografts, including those without features of OB. Therefore we suggest that ingraft chimerism may be a mechanism involved in the repair of alloimmune-mediated tissue injury after transplantation.</p

    Stem cells and repair of lung injuries

    Get PDF
    Fueled by the promise of regenerative medicine, currently there is unprecedented interest in stem cells. Furthermore, there have been revolutionary, but somewhat controversial, advances in our understanding of stem cell biology. Stem cells likely play key roles in the repair of diverse lung injuries. However, due to very low rates of cellular proliferation in vivo in the normal steady state, cellular and architectural complexity of the respiratory tract, and the lack of an intensive research effort, lung stem cells remain poorly understood compared to those in other major organ systems. In the present review, we concisely explore the conceptual framework of stem cell biology and recent advances pertinent to the lungs. We illustrate lung diseases in which manipulation of stem cells may be physiologically significant and highlight the challenges facing stem cell-related therapy in the lung

    Neutrophils in cancer: neutral no more

    Get PDF
    Neutrophils are indispensable antagonists of microbial infection and facilitators of wound healing. In the cancer setting, a newfound appreciation for neutrophils has come into view. The traditionally held belief that neutrophils are inert bystanders is being challenged by the recent literature. Emerging evidence indicates that tumours manipulate neutrophils, sometimes early in their differentiation process, to create diverse phenotypic and functional polarization states able to alter tumour behaviour. In this Review, we discuss the involvement of neutrophils in cancer initiation and progression, and their potential as clinical biomarkers and therapeutic targets

    Neutrophils in cancer: neutral no more

    Full text link
    corecore