3 research outputs found

    International nosocomial infection control consortium (INICC) report, data summary of 36 countries, for 2004-2009

    Get PDF
    The results of a surveillance study conducted by the International Nosocomial Infection Control Consortium (INICC) from January 2004 through December 2009 in 422 intensive care units (ICUs) of 36 countries in Latin America, Asia, Africa, and Europe are reported. During the 6-year study period, using Centers for Disease Control and Prevention (CDC) National Healthcare Safety Network (NHSN; formerly the National Nosocomial Infection Surveillance system [NNIS]) definitions for device-associated health care-associated infections, we gathered prospective data from 313,008 patients hospitalized in the consortium's ICUs for an aggregate of 2,194,897 ICU bed-days. Despite the fact that the use of devices in the developing countries' ICUs was remarkably similar to that reported in US ICUs in the CDC's NHSN, rates of device-associated nosocomial infection were significantly higher in the ICUs of the INICC hospitals; the pooled rate of central line-associated bloodstream infection in the INICC ICUs of 6.8 per 1,000 central line-days was more than 3-fold higher than the 2.0 per 1,000 central line-days reported in comparable US ICUs. The overall rate of ventilator-associated pneumonia also was far higher (15.8 vs 3.3 per 1,000 ventilator-days), as was the rate of catheter-associated urinary tract infection (6.3 vs. 3.3 per 1,000 catheter-days). Notably, the frequencies of resistance of Pseudomonas aeruginosa isolates to imipenem (47.2% vs 23.0%), Klebsiella pneumoniae isolates to ceftazidime (76.3% vs 27.1%), Escherichia coli isolates to ceftazidime (66.7% vs 8.1%), Staphylococcus aureus isolates to methicillin (84.4% vs 56.8%), were also higher in the consortium's ICUs, and the crude unadjusted excess mortalities of device-related infections ranged from 7.3% (for catheter-associated urinary tract infection) to 15.2% (for ventilator-associated pneumonia). Copyright © 2012 by the Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved

    An appropriately performed conventional blood culture can facilitate choice of therapy in resource-constrained settings-comparison with BACTEC 9050

    No full text
    Aims: Comparison of conventional blood culture with BACTEC 9050 for rate and time to detection of microorganisms. Settings and Design: A prospective study was carried out in a multispecialty tertiary care teaching hospital. Subjects and Methods: A total of 835 paired specimens (797 blood and 38 nonblood specimens) were collected and processed according to standard microbiological procedures by both conventional method as well as by BACTEC 9050 automated culture system. Clinical details of patients were recorded. Data were analyzed for time to detection and isolation rate by the two systems and compared. Results: Overall culture positivity for BACTEC 9050 and the conventional system was 32% and 19.88%, respectively. Eighty-five demonstrated concordant growth, 136 specimens were culture positive by BACTEC only, and 38 specimens were culture positive by conventional only. Twelve contaminants in BACTEC and nine contaminants in conventional system were detected. Using BACTEC 9050, higher isolation was observed for Acinetobacter spp., coagulase negative Staphylococcus spp., Streptococcus spp., and Candida spp. A total of 410 patients were on antimicrobial treatment and culture positivity was significantly higher with BACTEC 9050 (P < 0.0001). There was a significant difference in the mean time to detection with BACTEC 9050 recovering 86.8% of isolates within 48 h (P < 0.0001). Conclusions: Although BACTEC 9050 demonstrated a significantly higher recovery of microorganisms from blood, an appropriately performed conventional blood culture can facilitate the choice of therapy

    Erratum: International Nosocomial Infection Control Consortium report, data summary of 43 countries for 2007-2012. Device-associated module (American Journal of Infection Control (2014) 42 (942-956))

    No full text
    corecore