114 research outputs found

    Performance of Concrete Pavement in the Presence of Deicing Salts and Deicing Salt Cocktails

    Get PDF
    Deicing salts are widely used for anti-icing and de-icing operations in pavements. While historically sodium chloride may have been the deicer most commonly used, a wide range of deicing salts have begun to be used to operate at lower temperatures, to stick to the road better and to improve other aspects of performance such as environmental impact or corrosion resistance. It has been observed that some chloride based deicing salts can react with the calcium hydroxide in the mixture resulting in the formation of calcium oxychloride an expansive phase that can damage concrete pavements, especially at the joints. This report describes the two main objectives of this work. First, the report documents the development a standardized approach to use low temperature differential scanning calorimetry (LT-DSC) to assess the influence of cementitious binder composition on the potential for calcium oxychloride formation. Second, this work will assess the influence of blended salt cocktails on the formation of calcium oxychloride

    Influence of Activation Parameters on the Mechanical and Microstructure Properties of an Alkali-Activated BOF Steel Slag

    Get PDF
    ABSTRACT: Steel slag (SS) is a secondary material from steelmaking production with little commercial value. Its volumetric expansion and low reactivity limit the use of SS in Portland cement (PC)- based materials. This study investigated the potential use of basic oxygen furnace (BOF) slag as a single precursor in alkali-activated matrices (AAMs). Six AAM pastes were assessed by changing the silica modulus (0.75, 1.50 and 2.22) and the sodium concentration (4% or 6% Na2O?wt. SS). The early hydration was assessed using isothermal calorimetry (IC), followed by the assessment of the mechanical performance (compressive strength), apparent porosity, and structure and microstructure characterization (X-ray diffraction, thermogravimetric analysis and scanning electron microscopy). The results indicated that although the BOF slag may be considered a low-reactivity material, the alkaline environment effectively dissolved important crystalline phases to produce hydrates (reaction products). An optimized combination of activator sources was achieved with 4% Na2O and a silica modulus of 1.50?2.22, with a compressive strength up to 20 MPa, a significant amount of reaction products (C-S-H/C-A-S-H gels), and low initial and cumulative heat release. Those properties will help to promote SS recycling use in future engineering projects that do not require high-strength materials.This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—finance code 001, grant PPM-00709-18 (FAPEMIG) and grant 316882/2021-6 (CNPq

    Ultrasonic wave reflection measurements on self-compacting pastes and concretes

    Get PDF
    The objective of this study was to extend the use of combined longitudinal (P-wave) and shear (S-wave) ultrasonic wave reflection (UWR) to monitor the setting and stiffening of self-compacting pastes and concretes. An additional objective was to interpret the UWR responses of various modified cement pastes. A polymeric buffer with acoustic impedance close to that of cement paste, high impact polystyrene, was chosen to obtain sensitive results from the early hydration period. Criteria for initial and final set developed by our group in a prior study were used to compute setting times by UWR. UWR results were compared with standard penetration measurements. Stiffening behavior and setting times for normal cement pastes, pastes modified with mineral and chemical admixtures, self-compacting pastes, and concretes were explored using penetration resistance, S-wave and P-wave reflection. All three methods showed that set times of pastes varied linearly with w/c, that superplasticizer and fly ash delayed the set times of pastes, and that differences in w/cm, sp/cm, and fa/cm could be detected. Final set times determined from UWR correlated well with those from penetration resistance. Initial set times from S-wave reflection did not correlate very well with those from penetration resistance. Final set times from P-wave and S-wave reflection were roughly the same. Pastes with different chemical admixtures were tested, and the effects of these admixtures on stiffening were determined using UWR. Self-compacting concretes were studied using UWR, and their response and setting times were largely similar to that of corresponding self-compacting pastes. The P-wave reflection response was explored in detail, and the phenomenon of partial debonding and the factors affecting it were explained. Partial debonding is probably caused by autogenous shrinkage at final set, and was controlled and limited by water. The extent of partial debonding was higher with the transducers placed on the side as opposed to the bottom, and the S-wave transducer seemed to promote debonding in the P-wave reflection, whereas the P-wave transducer seemed to reduce debonding in the S-wave reflection. Simultaneous formwork pressure testing and UWR were performed; however, no clear correlation was seen between the two properties
    corecore