29 research outputs found

    A wearable motion capture suit and machine learning predict disease progression in Friedreich's ataxia

    Get PDF
    Friedreich's ataxia (FA) is caused by a variant of the Frataxin (FXN) gene, leading to its downregulation and progressively impaired cardiac and neurological function. Current gold-standard clinical scales use simplistic behavioral assessments, which require 18- to 24-month-long trials to determine if therapies are beneficial. Here we captured full-body movement kinematics from patients with wearable sensors, enabling us to define digital behavioral features based on the data from nine FA patients (six females and three males) and nine age- and sex-matched controls, who performed the 8-m walk (8-MW) test and 9-hole peg test (9 HPT). We used machine learning to combine these features to longitudinally predict the clinical scores of the FA patients, and compared these with two standard clinical assessments, Spinocerebellar Ataxia Functional Index (SCAFI) and Scale for the Assessment and Rating of Ataxia (SARA). The digital behavioral features enabled longitudinal predictions of personal SARA and SCAFI scores 9 months into the future and were 1.7 and 4 times more precise than longitudinal predictions using only SARA and SCAFI scores, respectively. Unlike the two clinical scales, the digital behavioral features accurately predicted FXN gene expression levels for each FA patient in a cross-sectional manner. Our work demonstrates how data-derived wearable biomarkers can track personal disease trajectories and indicates the potential of such biomarkers for substantially reducing the duration or size of clinical trials testing disease-modifying therapies and for enabling behavioral transcriptomics

    PolyQ Tract Toxicity in SCA1 is Length Dependent in the Absence of CAG Repeat Interruption

    Get PDF
    Spinocerebellar ataxia type 1 (SCA1) is an autosomal dominant neurodegenerative disorder caused by an expansion of a polyglutamine tract within the ATXN1 gene. Normal alleles have been reported to range from 6 to 35 repeats, intermediate alleles from 36 to 38 repeats and fully penetrant pathogenic alleles have at least 39 repeats. This distribution was based on relatively few samples and the narrow intermediate range makes the accuracy of the repeat sizing crucial for interpreting and reporting diagnostic tests, which can vary between laboratories. Here, we examine the distribution of 6378 SCA1 chromosomes and identify a very late onset SCA1 family with a fully penetrant uninterrupted pathogenic allele containing 38 repeats. This finding supports the theory that polyQ toxicity is related to the increase of the length of the inherited tracts and not as previously hypothesized to the structural transition occurring above a specific threshold. In addition, the threshold of toxicity shifts to a shorter polyQ length with the increase of the lifespan in SCA1. Furthermore, we show that SCA1 intermediate alleles have a different behavior compared to the other polyglutamine disorders as they do not show reduced penetrance when uninterrupted. Therefore, the pathogenic mechanism in SCA1 is distinct from other cytosine-adenine-guanine (CAG) repeat disorders. Accurately sizing repeats is paramount in precision medicine and can be challenging particularly with borderline alleles. We examined plasmids containing cloned CAG repeat tracts alongside a triplet repeat primed polymerase chain reaction (TP PCR) CAG repeat ladder to improve accuracy in repeat sizing by fragment analysis. This method accurately sizes the repeats irrespective of repeat composition or length. We also improved the model for calculating repeat length from fragment analysis sizing by fragment analyzing 100 cloned repeats of known size. Therefore, we recommend these methods for accurately sizing repeat lengths and restriction enzyme digestion to identify interruptions for interpretation of a given allele’s pathogenicity

    A reduction in Drp1-mediated fission compromises mitochondrial health in autosomal recessive spastic ataxia of Charlevoix Saguenay

    Get PDF
    The neurodegenerative disease autosomal recessive spastic ataxia of Charlevoix Saguenay (ARSACS) is caused by loss of function of sacsin, a modular protein that is required for normal mitochondrial network organization. To further understand cellular consequences of loss of sacsin, we performed microarray analyses in sacsin knockdown cells and ARSACS patient fibroblasts. This identified altered transcript levels for oxidative phosphorylation and oxidative stress genes. These changes in mitochondrial gene networks were validated by quantitative reverse transcription PCR. Functional impairment of oxidative phosphorylation was then demonstrated by comparison of mitochondria bioenergetics through extracellular flux analyses. Moreover, staining with the mitochondrial-specific fluorescent probe MitoSox suggested increased levels of superoxide in patient cells with reduced levels of sacsin.Key to maintaining mitochondrial health is mitochondrial fission, which facilitates the dynamic exchange of mitochondrial components and separates damaged parts of the mitochondrial network for selective elimination by mitophagy. Fission is dependent on dynamin-related protein 1 (Drp1), which is recruited to prospective sites of division where it mediates scission. In sacsin knockdown cells and ARSACS fibroblasts, we observed a decreased incidence of mitochondrial associated Drp1 foci. This phenotype persists even when fission is induced by drug treatment. Mitochondrial-associated Drp1 foci are also smaller in sacsin knockdown cells and ARSACS fibroblasts. These data suggest a model for ARSACS where neurons with reduced levels of sacsin are compromised in their ability to recruit or retain Drp1 at the mitochondrial membrane leading to a decline in mitochondrial health, potentially through impaired mitochondrial quality control

    Multi-omic profiling reveals the ataxia protein sacsin is required for integrin trafficking and synaptic organization

    Get PDF
    Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is a childhood-onset cerebellar ataxia caused by mutations in SACS, which encodes the protein sacsin. Cellular ARSACS phenotypes include mitochondrial dysfunction, intermediate filament disorganization, and progressive death of cerebellar Purkinje neurons. It is unclear why the loss of sacsin causes these deficits or why they manifest as cerebellar ataxia. Here, we perform multi-omic profiling in sacsin knockout (KO) cells and identify alterations in microtubule dynamics and mislocalization of focal adhesion (FA) proteins, including multiple integrins. Deficits in FA structure, signaling, and function can be rescued by targeting PTEN, a negative regulator of FA signaling. ARSACS mice possess mislocalization of ITGA1 in Purkinje neurons and synaptic disorganization in the deep cerebellar nucleus (DCN). The sacsin interactome reveals that sacsin regulates interactions between cytoskeletal and synaptic adhesion proteins. Our findings suggest that disrupted trafficking of synaptic adhesion proteins is a causal molecular deficit in ARSACS

    Complexity of the Genetics and Clinical Presentation of Spinocerebellar Ataxia 17

    Get PDF
    Spinocerebellar ataxia type 17 (SCA17) is a rare autosomal dominant neurodegenerative disease caused by a CAG repeat expansion in the TATA-box binding protein gene (TBP). The disease has a varied age at onset and clinical presentation. It is distinct from other SCAs for its association with dementia, psychiatric symptoms, and some patients presenting with chorea. For this reason, it is also called Huntington’s disease-like 4 (HDL-4). Here we examine the distribution of SCA17 allele repeat sizes in a United Kingdom-based cohort with ataxia and find that fully penetrant pathogenic alleles are very rare (5 in 1,316 chromosomes; 0.38%). Phenotype-genotype correlation was performed on 30 individuals and the repeat structure of their TBP genes was examined. We found a negative linear correlation between total CAG repeat length and age at disease onset and, unlike SCA1, there was no correlation between the longest contiguous CAG tract and age at disease onset. We were unable to identify any particular phenotypic trait that segregated with particular CAG/CAA repeat tract structures or repeat lengths. One individual within the cohort was homozygous for variable penetrance range SCA17 alleles. This patient had a similar age at onset to heterozygotes with the same repeat sizes, but also presented with a rapidly progressive dementia. A pair of monozygotic twins within the cohort presented 3 years apart with the sibling with the earlier onset having a more severe phenotype with dementia and chorea in addition to the ataxia observed in their twin. This appears to be a case of variable expressivity, possibly influenced by other environmental or epigenetic factors. Finally, there was an asymptomatic father with a severely affected child with an age at onset in their twenties. Despite this, they share the same expanded allele repeat sizes and sequences, which would suggest that there is marked difference in the penetrance of this 51-repeat allele. We therefore propose that the variable penetrance range extend from 48 repeats to incorporate this allele. This study shows that there is variability in the presentation and penetrance of the SCA17 phenotype and highlights the complexity of this disorder

    Complexity of the Genetics and Clinical Presentation of Spinocerebellar Ataxia 17

    Get PDF
    Spinocerebellar ataxia type 17 (SCA17) is a rare autosomal dominant neurodegenerative disease caused by a CAG repeat expansion in the TATA-box binding protein gene (TBP). The disease has a varied age at onset and clinical presentation. It is distinct from other SCAs for its association with dementia, psychiatric symptoms, and some patients presenting with chorea. For this reason, it is also called Huntington’s disease-like 4 (HDL-4). Here we examine the distribution of SCA17 allele repeat sizes in a United Kingdom-based cohort with ataxia and find that fully penetrant pathogenic alleles are very rare (5 in 1,316 chromosomes; 0.38%). Phenotype-genotype correlation was performed on 30 individuals and the repeat structure of their TBP genes was examined. We found a negative linear correlation between total CAG repeat length and age at disease onset and, unlike SCA1, there was no correlation between the longest contiguous CAG tract and age at disease onset. We were unable to identify any particular phenotypic trait that segregated with particular CAG/CAA repeat tract structures or repeat lengths. One individual within the cohort was homozygous for variable penetrance range SCA17 alleles. This patient had a similar age at onset to heterozygotes with the same repeat sizes, but also presented with a rapidly progressive dementia. A pair of monozygotic twins within the cohort presented 3 years apart with the sibling with the earlier onset having a more severe phenotype with dementia and chorea in addition to the ataxia observed in their twin. This appears to be a case of variable expressivity, possibly influenced by other environmental or epigenetic factors. Finally, there was an asymptomatic father with a severely affected child with an age at onset in their twenties. Despite this, they share the same expanded allele repeat sizes and sequences, which would suggest that there is marked difference in the penetrance of this 51-repeat allele. We therefore propose that the variable penetrance range extend from 48 repeats to incorporate this allele. This study shows that there is variability in the presentation and penetrance of the SCA17 phenotype and highlights the complexity of this disorder

    Further characterisation of bluetongue virus non-structural protein 2

    No full text
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Specific binding of Bluetongue virus NS2 to different viral plus-strand RNAs.

    Get PDF
    The Reoviridae have double-stranded RNA genomes of 10-12 segments, each in a single copy in the mature virion. The basis of genome segment sorting during virus assembly that ensures each virus particle contains the complete viral genome is unresolved. Bluetongue virus (BTV) NS2 is a single-stranded RNA-binding protein that forms inclusion bodies in infected cells. Here, we demonstrate that the specific interaction between NS2 and a stem-loop structure present in BTV S10 RNA, and phylogenetically conserved in other BTV serotypes, is abolished by mutations predicted to disrupt the structure. Subsequently, we mapped RNA regions in three other genomic segments of BTV that are bound preferentially by NS2. However, structure probing of these RNAs did not reveal secondary structure motifs that obviously resembled the stem-loop implicated in the NS2-S10 interaction. In addition, the specific binding by NS2 to two different viral RNAs was found to occur independently. Together, these data support the hypothesis that the recognition by NS2 of different RNA structures may be the basis for discrimination between viral RNAs during virus assembly

    Determining the CAG Repeat Mosaic in Post-mortem Human HD Brains

    No full text
    Background: Huntington’s Disease (HD) is fully penetrant when ≥40 CAG repeats are present in the Huntingtin gene. CAG repeat length is inconsistent both between and within germline and somatic tissues, and this instability is most evident in the brain. Such somatic expansions are suggested to contribute to HD progression and neurodegeneration. It has been determined in a small number of Vonsattel grade 0 HD cases that neuronal CAG repeat expansions are more prominent in the striatum than in the cortex. As the disease progresses, this association is reversed. However, the very large expansions previously reported have not been replicated. Aims: To determine the exact CAG repeat sequence and length in six post-mortem human HD brains and corresponding blood, and examine the tissue-specific pattern of somatic mosaicism. Methods: DNA was extracted from brain and blood, sized by fragment analysis, cloned and sequenced by Sanger sequencing, Illumina MiSeq, and PacBio SMRT sequencing. Small-pool PCR was used for repeat length quantification. Results: Large expansions up to 620 CAG repeats are present in end-stage HD human post-mortem brains. The association between the striatum and cortex in relation to the degree of mosaicism is dependent on patient phenotype. With the exception of one sample, the cerebellum and blood are consistently stable. Conclusions: Repeat expansions up to 15x the diagnostically sized expanded allele are present in the post-mortem human HD brain, substantiating the extent of the tissue-specific instability observed and consistent with a major role in driving disease pathology

    Determining the CAG Repeat Mosaic in Post-mortem Human HD Brains

    No full text
    Background: Huntington’s Disease (HD) is fully penetrant when ≥40 CAG repeats are present in the Huntingtin gene. CAG repeat length is inconsistent both between and within germline and somatic tissues, and this instability is most evident in the brain. Such somatic expansions are suggested to contribute to HD progression and neurodegeneration. It has been determined in a small number of Vonsattel grade 0 HD cases that neuronal CAG repeat expansions are more prominent in the striatum than in the cortex. As the disease progresses, this association is reversed. However, the very large expansions previously reported have not been replicated. Aims: To determine the exact CAG repeat sequence and length in six post-mortem human HD brains and corresponding blood, and examine the tissue-specific pattern of somatic mosaicism. Methods: DNA was extracted from brain and blood, sized by fragment analysis, cloned and sequenced by Sanger sequencing, Illumina MiSeq, and PacBio SMRT sequencing. Small-pool PCR was used for repeat length quantification. Results: Large expansions up to 620 CAG repeats are present in end-stage HD human post-mortem brains. The association between the striatum and cortex in relation to the degree of mosaicism is dependent on patient phenotype. With the exception of one sample, the cerebellum and blood are consistently stable. Conclusions: Repeat expansions up to 15x the diagnostically sized expanded allele are present in the post-mortem human HD brain, substantiating the extent of the tissue-specific instability observed and consistent with a major role in driving disease pathology
    corecore