6 research outputs found
The Use of Waste Management Techniques to Enhance Household Income and Reduce Urban Water Pollution
Appropriate waste management options are major concerns in the developing world. Current methods include incineration in the open and accumulation of wastes in designated places where they constitute nuisance to the environment. Apart from air pollution from the incinerators, leachates from decomposed wastes are either washed off where they serve as source of pollutants to the adjourning streams and rivers or contaminate groundwater through deep percolation. We present viable options for managing agricultural wastes in this chapter. The options presented are so simple and sustainable such that it can be managed by individuals. Hence, they are independent of the government bureaucratic bottlenecks that have been the bane of the previous government interventions. If embraced, it will also serve as sources of income for the concerned household, hence enhance their livelihood
Lung Function of Grain Millers Exposed to Grain Dust and Diesel Exhaust in Two Food Markets in Ibadan Metropolis, Nigeria
Background: Despite growing concern over occupational exposure to particulate matter (PM) such as grain dust and diesel exhaust, information about the exposure level and health implications among workers in small-scale milling enterprises in developing countries like Nigeria has not been adequately documented. The purpose of this study was to assess the level of exposure to grain dust and diesel exhaust and effect on lung function among grain millers in food markets in Ibadan metropolis, Nigeria. Methods: The study adopted descriptive cross-sectional design with a comparative approach. Sixteen grain milling shops each were randomly selected from two major food markets in Ibadan metropolis for indoor PM10 and PM2.5 monitoring. Seventy-two respondents each were proportionately selected from grain millers and shop owners for forced expiratory volume in one second and peak expiratory flow rate tests. Results: The PM2.5 concentrations for both market locations ranged between 1,269.3 and 651.7 μg/m3, while PM10 concentrations were between 1,048.2 and 818.1 μg/m3. The recorded concentrations exceeded the World Health Organization guideline limit of 50 μg/m3 and 25 μg/m3 for PM2.5 and PM10, respectively. As compared with control group (2.1 L), significantly lower forced expiratory volume in one second value (1.61 L) was observed among the exposed group (p < 0.05). Likewise, significantly lower peak expiratory flow rate value (186.7 L/min) was recorded among the exposed group than the control group (269.51 L/min) (p < 0.05). Conclusion: Exposure to grain dust and diesel exhaust accentuated respiratory disorders with declines in lung functions amongst grain millers. Improved milling practices and engaging cleaner milling facilities should be adopted to minimize exposure and related hazards. Keywords: Forced expiratory volume in one second, Particulate matter, Peak expiratory flow rate, Small-scale milling enterprise
Anaerobic co-digestion of dairy cow manure and high concentrated food processing waste
Anaerobic co-digestion of dairy manure (DM) and concentrated food processing wastes (FPW) under thermophilic (55 A degrees C) and mesophilic (35 A degrees C) temperatures, and fertilizer value of the effluent were investigated in this study. Two types of influent feedstock were utilized: 100 % DM and a 7:3 mixture (wet weight basis) of DM and FPW. The contents of the FPW, as feedstock were 3:3:3:1 mixture of cheese whey, animal blood, used cooking oil and residue of fried potato. Four continuous digestion experiments were carried out in 10 L digesters. Co-digestion under thermophilic temperature increased methane production per digester volume. However, co-digestion at 35 A degrees C was inhibited. Total Kjeldahl nitrogen (N) recovered after digestion ranged from 73.1 to 91.9 %, while recoveries of ammonium nitrogen (NH4-N) exceeded 100 %. The high recovery of NH4-N was attributed to mineralization of influent organic N. The mixture of DM and FPW showed greater recoveries of NH4-N after digestion compared to DM only, reflecting its greater organic N degradability. The ratios of extractable to total calcium, phosphorus and magnesium were slightly reduced after digestion. These results indicate that co-digestion of DM and FPW under thermophilic temperature enhances methane production and offers additional benefit of organic fertilizer creation