142 research outputs found

    Giant Ringlike Radio Structures Around Galaxy Cluster Abell 3376

    Get PDF
    In the current paradigm of cold dark matter cosmology, large-scale structures are assembling through hierarchical clustering of matter. In this process, an important role is played by megaparsec (Mpc)-scale cosmic shock waves, arising in gravity-driven supersonic flows of intergalactic matter onto dark matter-dominated collapsing structures such as pancakes, filaments, and clusters of galaxies. Here, we report Very Large Array telescope observations of giant (~2 Mpc by 1.6 Mpc), ring-shaped nonthermal radio-emitting structures, found at the outskirts of the rich cluster of galaxies Abell 3376. These structures may trace the elusive shock waves of cosmological large-scale matter flows, which are energetic enough to power them. These radio sources may also be the acceleration sites where magnetic shocks are possibly boosting cosmic-ray particles with energies of up to 10^18 to 10^19 electron volts.Comment: Published on Science, 3 November 2006. Main paper and Supporting Online Materia

    Non-affine deformation in microstructure selection in solids: I. Molecular dynamics

    Get PDF
    We study the nucleation dynamics and microstructure selection in a model two-dimensional solid undergoing a square to rhombic transformation, using coarse-grained molecular dynamics (MD) simulations. We find a range of microstructures depending on the depth of quench. The transformations are accompanied by the creation of transient and localized non-affine zones (NAZ), which evolve with the rapidly moving parent-product interface. These plastic regions are created beyond a threshold stress, at a rate proportional to the local stress. We show that the dynamics of NAZs determines the selection of microstructure, including the ferrite and martensite

    The radio source in Abell 980: A Detached-Double-Double Radio Galaxy?

    Full text link
    It is argued that the new morphological and spectral information gleaned from the recently published LoFAR Two meter Sky Survey data release 2 (LoTSS-2 at 144 MHz) observations of the cluster Abell 980 (A980), in combination with its existing GMRT and VLA observations at higher frequencies, provide the much-needed evidence to strengthen the proposal that the cluster's radio emission comes mainly from two double radio sources, both produced by the brightest cluster galaxy (BCG) in two major episodes of jet activity. The two radio lobes left from the previous activity have become diffuse and developed an ultra-steep radio spectrum while rising buoyantly through the confining hot intra-cluster medium (ICM) and, concomitantly, the host galaxy has drifted to the cluster centre and entered a new active phase manifested by a coinciding younger double radio source. The new observational results and arguments presented here bolster the case that the old and young double radio sources in A980 conjointly represent a `double-double' radio galaxy whose two lobe-pairs have lost colinearity due to the (lateral) drift of their parent galaxy, making this system by far the most plausible case of a `Detached-Double-Double Radio Galaxy' (dDDRG).Comment: Accepted for publication by Publications of the Astronomical Society of Australia (PASA); 10 pages, 6 figure

    Low-frequency radio study of MACS clusters at 610 and 235 MHz using the GMRT

    Get PDF
    Studies have shown that mergers of massive galaxy clusters produce shocks and turbulence in the intra-cluster medium, the possible event that creates radio relics, as well as the radio halos. Here we present GMRT dual-band (235 and 610~MHz) radio observations of four such clusters from the MAssive Cluster Survey (MACS) catalogue. We report the discovery of a very faint, diffuse, elongated radio source with a projected size of about 0.5~Mpc in cluster MACSJ0152.5-2852. We also confirm the presence of a radio relic-like source (about 0.4~Mpc, previously reported at 325~MHz) in MACSJ0025.4-1222 cluster. Proposed relics in both these clusters are found apparently inside the virial radius instead of their usual peripheral location, while no radio halos are detected. These high-redshift clusters (z=0.584 and 0.413) are among the earliest merging systems detected with cluster radio emissions. In MACSJ1931-2635 cluster, we found a radio mini-halo and an interesting highly bent pair of radio jets. Further, we present here a maiden study of low frequency (GMRT 235&610~MHz) spectral and morphological signatures of a previously known radio cluster MACSJ0014.3-3022 (Abell~2744). This cluster hosts a relatively flat spectrum (α610235∼−1.15), giant (∼1.6~Mpc each) halo-relic structure and a close-by high-speed (1769±148359~km~s−1) merger-shock (M=2.02±0.170.41) originated from a possible second merger in the cluster
    corecore