5 research outputs found

    A new single-step protocol for rapid baculovirus-driven protein production in insect cells

    No full text
    Abstract Background In the last three decades, the Baculovirus expression vector system (BEV) has evolved to one of the most widely used eukaryotic systems for heterologous protein expression including approved vaccines and therapies. Despite the significant improvements introduced during the past years, the BEV system still has major drawbacks, primarily the time required to generate recombinant virus and virus instability for certain target proteins. In this study we show that the conventional method to generate recombinant Baculovirus using a Tn7 transposition based system can be shortened to a single-step transfection-only procedure without further amplification. Methods In a first step we have adapted a recently published protocol that replaces the standard liposome-based transfection procedure of adherent insect cells by transfecting insect cells in suspension with a preformed DNA-PEI complex generating P0 virus. We have then expressed and purified six different target proteins, among them four intracellular and two secreted proteins, by infecting insect cells either with P0 or P1 virus. Results We demonstrate that transfection in suspension is as efficient as the standard protocol, but in addition allows generation of high amounts of P0 virus early in the process. To test if this P0 virus generated by bacmid transfection can be used directly for protein expression in either the screening or production process, we compared P0 versus amplified P1 virus-mediated protein expression. We show that protein expression levels, purity and yield of the purified proteins are equally high for P0 and P1. Conclusion The standard protocol for generating recombinant baculovirus comprises transfection of the bacmid followed by one or two subsequent virus amplification steps. In this study we show that Baculovirus generated by transfection-only is equally efficient in driving protein expression. This reduces the time from bacmid DNA to protein to eight days and reduces the risk of virus decay. In contrast to transient gene expression protocols, the required amount of DNA is minimal: 100 ”g bacmid DNA is sufficient for a production scale of 10 L

    Comparative proteome analysis of native differentiated and cultured dedifferentiated human rpe cells

    No full text
    1,4,5 PURPOSE. Dedifferentiation of retinal pigment epithelial (RPE) cells is a crucial event in the pathogenesis of proliferative vitreoretinopathy (PVR). This study was designed to improve the understanding of RPE cell dedifferentiation in vitro. The protein expression pattern of native differentiated RPE cells was compared with that of cultured, thereby dedifferentiated, RPE cells. METHODS. Differentiated native human RPE cells and monolayers of dedifferentiated cultured primary human RPE cells were processed for two-dimensional (2-D) electrophoresis. Total cellular proteins were separated by isoelectric focusing using immobilized pH gradients (IPG 3-10) and electrophoresis on 9% to 15% gradient polyacrylamide gels. Proteins were visualized by silver staining. Silver-stained gel spots were excised, digested in situ, and analyzed by matrix-assisted laser desorption ionization time of flight (MALDI-TOF) mass spectroscopy (MS). The resultant peptide mass fingerprints were searched against the public domain NCBInr, MSDB, and EnsemblC databases to identify the respective proteins. RESULTS. One hundred seventy nine protein spots were analyzed and classified into functional categories. Proteins associated with highly specialized functions of the RPE, which are required for interaction with photoreceptor cells, including RPE65, cellular retinaldehyde-binding protein (CRALBP), and cellular retinol-binding protein (CRBP), were absent in dedifferentiated cultured RPE cells, whereas proteins involved in phagocytosis and exocytosis, including cathepsin D and clathrin were still present. Dedifferentiated RPE cells displayed a strong shift toward increased expression of proteins associated with cell shape, cell adhesion, and stress fiber formation, including cytokeratin 19, gelsolin, and tropomyosins, and also acquired increased expression of factors involved in translation and tumorigenic signal transduction such as annexin I and translation initiation factor (eIF)-5A. CONCLUSIONS. Dedifferentiation of human RPE cells in vitro results in downregulation of proteins associated with highly specialized functions of the RPE and induces the differential expression of proteins related to cytoskeleton organization, cell shape, cell migration, and mediation of proliferative signal transduction. These in vitro data suggest that the dedifferentiated status of RPE cells per se may initiate PVR. Further investigation of candidate proteins may identify additional targets for treatment or prevention of diseases associated with RPE dedifferentiation. (Invest Ophthalmol Vis Sci. 2003;44: 3629 -3641

    Community-Wide Experimental Evaluation of the PROSS Stability-Design Method

    No full text
    International audienceRecent years have seen a dramatic improvement in protein-design methodology. Nevertheless, most methods demand expert intervention, limiting their widespread adoption. By contrast, the PROSS algorithm for improving protein stability and heterologous expression levels has been successfully applied to a range of challenging enzymes and binding proteins. Here, we benchmark the application of PROSS as a stand-alone tool for protein scientists with no or limited experience in modeling. Twelve laboratories from the Protein Production and Purification Partnership in Europe (P4EU) challenged the PROSS algorithm with 14 unrelated protein targets without support from the PROSS developers. For each target, up to six designs were evaluated for expression levels and in some cases, for thermal stability and activity. In nine targets, designs exhibited increased heterologous expression levels either in prokaryotic and/or eukaryotic expression systems under experimental conditions that were tailored for each target protein. Furthermore, we observed increased thermal stability in nine of ten tested targets. In two prime examples, the human Stem Cell Factor (hSCF) and human Cadherin-Like Domain (CLD12) from the RET receptor, the wild type proteins were not expressible as soluble proteins in E. coli, yet the PROSS designs exhibited high expression levels in E. coli and HEK293 cells, respectively, and improved thermal stability. We conclude that PROSS may improve stability and expressibility in diverse cases, and that improvement typically requires target-specific expression conditions. This study demonstrates the strengths of community-wide efforts to probe the generality of new methods and recommends areas for future research to advance practically useful algorithms for protein science
    corecore