331 research outputs found

    Citizen-science data provides new insight into annual and seasonal variation in migration patterns

    Full text link
    Current rates of global environmental and climate change pose potential challenges for migratory species that must cope with or adapt to new conditions and different rates of change across broad spatial scales throughout their annual life cycle. North American migratory hummingbirds may be especially sensitive to changes in environment and climate due to their extremely small body size, high metabolic rates, and dependence on nectar as a main resource. We used occurrence information from the eBird citizen-science database to track migratory movements of five North American hummingbird species (Archilochus alexandri, A. colubris, Selasphorus calliope, S. platycercus, and S. rufus) across 6 years (2008–2013) at a daily temporal resolution to describe annual and seasonal variation in migration patterns. Our findings suggest that the timing of the onset of spring migration generally varies less than the arrival on the wintering grounds. Species follow similar routes across years, but exhibit more variation in daily longitude than latitude. Long distance migrants generally had less annual variation in geographic location and timing than shorter distance migrants. Our study is among the first to examine variation in migration routes and timing for hummingbirds, but more work is needed to understand the capacity of these species to respond to different rates of environmental change along their migratory routes

    Long‐term monitoring and experimental manipulation of a Chihuahuan desert ecosystem near Portal, Arizona (1977–2013)

    Full text link
    Desert ecosystems have long served as model systems in the study of ecological concepts (e.g., competition, resource pulses, top‐down/bottom‐up dynamics). However, the inherent variability of resource availability in deserts, and hence consumer dynamics, can also make them challenging ecosystems to understand. Study of a Chihuahuan desert ecosystem near Portal, Arizona began in 1977. At this site, 24 experimental plots were established and divided among controls and experimental manipulations. Experimental manipulations over the years include removal of all or some rodent species, all or some ants, seed additions, and various alterations of the annual plant community. This dataset includes data previously available through an older data publication and adds 11 years of data. It also includes additional ant and weather data not previously available. These data have been used in a variety of publications documenting the effects of the experimental manipulations as well as the response of populations and communities to long‐term changes in climate and habitat. Sampling is ongoing and additional data will be published in the future.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/146431/1/ecy1360.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146431/2/ecy1360_am.pd

    Right Isomerism of the Brain in Inversus Viscerum Mutant Mice

    Get PDF
    Left-right (L-R) asymmetry is a fundamental feature of higher-order neural function. However, the molecular basis of brain asymmetry remains unclear. We recently reported L-R asymmetry of hippocampal circuitry caused by differential allocation of N-methyl-D-aspartate receptor (NMDAR) subunit GluRΔ2 (NR2B) in hippocampal synapses. Using electrophysiology and immunocytochemistry, here we analyzed the hippocampal circuitry of the inversus viscerum (iv) mouse that has a randomized laterality of internal organs. The iv mouse hippocampus lacks L-R asymmetry, it exhibits right isomerism in the synaptic distribution of the Δ2 subunit, irrespective of the laterality of visceral organs. This independent right isomerism of the hippocampus is the first evidence that a distinct mechanism downstream of the iv mutation generates brain asymmetry

    Left−Right Asymmetry Defect in the Hippocampal Circuitry Impairs Spatial Learning and Working Memory in iv Mice

    Get PDF
    Although left-right (L−R) asymmetry is a fundamental feature of higher-order brain function, little is known about how asymmetry defects of the brain affect animal behavior. Previously, we identified structural and functional asymmetries in the circuitry of the mouse hippocampus resulting from the asymmetrical distribution of NMDA receptor GluR Δ2 (NR2B) subunits. We further examined the Δ2 asymmetry in the inversus viscerum (iv) mouse, which has randomized laterality of internal organs, and found that the iv mouse hippocampus exhibits right isomerism (bilateral right-sidedness) in the synaptic distribution of theΔ2 subunit, irrespective of the laterality of visceral organs. To investigate the effects of hippocampal laterality defects on higher-order brain functions, we examined the capacity of reference and working memories of iv mice using a dry maze and a delayed nonmatching-to-position (DNMTP) task, respectively. The iv mice improved dry maze performance more slowly than control mice during acquisition, whereas the asymptotic level of performance was similar between the two groups. In the DNMTP task, the iv mice showed poorer accuracy than control mice as the retention interval became longer. These results suggest that the L−R asymmetry of hippocampal circuitry is critical for the acquisition of reference memory and the retention of working memory

    Involvement of a specificity proteins-binding element in regulation of basal and estrogen-induced transcription activity of the BRCA1 gene

    Get PDF
    INTRODUCTION:Increased estrogen level has been regarded to be a risk factor for breast cancer. However, estrogen has also been shown to induce the expression of the tumor suppressor gene, BRCA1. Upregulation of BRCA1 is thought to be a feedback mechanism for controlling DNA repair in proliferating cells. Estrogens enhance transcription of target genes by stimulating the association of the estrogen receptor (ER) and related coactivators to estrogen response elements or to transcription complexes formed at activator protein (AP)-1 or specificity protein (Sp)-binding sites. Interestingly, the BRCA1 gene lacks a consensus estrogen response element. We previously reported that estrogen stimulated BRCA1 transcription through the recruitment of a p300/ER-alpha complex to an AP-1 site harbored in the proximal BRCA1 promoter. The purpose of the study was to analyze the contribution of cis-acting sites flanking the AP-1 element to basal and estrogen-dependent regulation of BRCA1 transcription.METHODS:Using transfection studies with wild-type and mutated BRCA1 promoter constructs, electromobility binding and shift assays, and DNA-protein interaction and chromatin immunoprecipitation assays, we investigated the role of Sp-binding sites and cAMP response element (CRE)-binding sites harbored in the proximal BRCA1 promoter.RESULTS:We report that in the BRCA1 promoter the AP-1 site is flanked upstream by an element (5'-GGGGCGGAA-3') that recruits Sp1, Sp3, and Sp4 factors, and downstream by a half CRE-binding motif (5'-CGTAA-3') that binds CRE-binding protein. In ER-alpha-positive MCF-7 cells and ER-alpha-negative Hela cells expressing exogenous ER-alpha, mutation of the Sp-binding site interfered with basal and estrogen-induced BRCA1 transcription. Conversely, mutation of the CRE-binding element reduced basal BRCA1 promoter activity but did not prevent estrogen activation. In combination with the AP-1/CRE sites, the Sp-binding domain enhanced the recruitment of nuclear proteins to the BRCA1 promoter. Finally, we report that the MEK1 (mitogen-activated protein kinase kinase-1) inhibitor PD98059 attenuated the recruitment of Sp1 and phosphorylated ER-alpha, respectively, to the Sp and AP-1 binding element.CONCLUSION:These cumulative findings suggest that the proximal BRCA1 promoter segment comprises cis-acting elements that are targeted by Sp-binding and CRE-binding proteins that contribute to regulation of BRCA1 transcription.This item is part of the UA Faculty Publications collection. For more information this item or other items in the UA Campus Repository, contact the University of Arizona Libraries at [email protected]

    Multidimensional Recording (MDR) and Data Sharing: An Ecological Open Research and Educational Platform for Neuroscience

    Get PDF
    Primate neurophysiology has revealed various neural mechanisms at the single-cell level and population level. However, because recording techniques have not been updated for several decades, the types of experimental design that can be applied in the emerging field of social neuroscience are limited, in particular those involving interactions within a realistic social environment. To address these limitations and allow more freedom in experimental design to understand dynamic adaptive neural functions, multidimensional recording (MDR) was developed. MDR obtains behavioral, neural, eye position, and other biological data simultaneously by using integrated multiple recording systems. MDR gives a wide degree of freedom in experimental design because the level of behavioral restraint is adjustable depending on the experimental requirements while still maintaining the signal quality. The biggest advantage of MDR is that it can provide a stable neural signal at higher temporal resolution at the network level from multiple subjects for months, which no other method can provide. Conventional event-related analysis of MDR data shows results consistent with previous findings, whereas new methods of analysis can reveal network mechanisms that could not have been investigated previously. MDR data are now shared in the public server Neurotycho.org. These recording and sharing methods support an ecological system that is open to everyone and will be a valuable and powerful research/educational platform for understanding the dynamic mechanisms of neural networks

    Local biodiversity change reflects interactions among changing abundance, evenness, and richness

    Get PDF
    Biodiversity metrics often integrate data on the presence and abundance of multiple species. Yet our understanding of covariation between changes to the numbers of individuals, the evenness of species relative abundances, and the total number of species remains limited. Using individual-based rarefaction curves, we show how expected positive relationships among changes in abundance, evenness and richness arise, and how they can break down. We then examined interdependencies between changes in abundance, evenness and richness in more than 1100 assemblages sampled either through time or across space. As predicted, richness changes were greatest when abundance and evenness changed in the same direction, and countervailing changes in abundance and evenness acted to constrain the magnitude of changes in species richness. Site-to-site differences in abundance, evenness, and richness were often decoupled, and pairwise relationships between these components across assemblages were weak. In contrast, changes in species richness and relative abundance were strongly correlated for assemblages varying through time. Temporal changes in local biodiversity showed greater inertia and stronger relationships between the component changes when compared to site-to-site variation. Overall, local variation in assemblage diversity was rarely due to repeated passive samples from an approximately static species abundance distribution. Instead, changing species relative abundances often dominated local variation in diversity. Moreover, how changing relative abundances combined with changes to total abundance frequently determined the magnitude of richness changes. Embracing the interdependencies between changing abundance, evenness and richness can provide new information to better understand biodiversity change in the Anthropocene
    • 

    corecore