51 research outputs found

    Suppression of Tumor Energy Supply by Liposomal Nanoparticle-Mediated Inhibition of Aerobic Glycolysis

    Get PDF
    Aerobic glycolysis enables cancer cells to rapidly take up nutrients (e.g., nucleotides, amino acids, and lipids) and incorporate them into the biomass needed to produce a new cell. In contrast to existing chemotherapy/radiotherapy strategies, inhibiting aerobic glycolysis to limit the adenosine 5′-triphosphate (ATP) yield is a highly efficient approach for suppressing tumor cell proliferation. However, most, if not all, current inhibitors of aerobic glycolysis cause significant adverse effects because of their nonspecific delivery and distribution to nondiseased organs, low bioavailability, and a narrow therapeutic window. New strategies to enhance the biosafety and efficacy of these inhibitors are needed for moving them into clinical applications. To address this need, we developed a liposomal nanocarrier functionalized with a well-validated tumor-targeting peptide to specifically deliver the aerobic glycolysis inhibitor 3-bromopyruvate (3-BP) into the tumor tissue. The nanoparticles effectively targeted tumors after systemic administration into tumor-bearing mice and suppressed tumor growth by locally releasing 3-BP to inhibit the ATP production of the tumor cells. No overt side effects were observed in the major organs. This report demonstrates the potential utility of the nanoparticle-enabled delivery of an aerobic glycolysis inhibitor as an anticancer therapeutic agent

    Effectiveness and safety of anti-BCMA chimeric antigen receptor T-cell treatment in relapsed/refractory multiple myeloma: a comprehensive review and meta-analysis of prospective clinical trials

    Get PDF
    Background: Chimeric antigen receptor T cells treatment targeting B cell maturation antigen (BCMA) is an emerging treatment option for relapsed/refractory multiple myeloma (RRMM) and has demonstrated outstanding outcomes in clinical studies.Objective: The aim of this comprehensive review and meta-analysis was to summarize the effectiveness and safety of anti-BCMA CAR-T treatment for patients with relapsed/refractory multiple myeloma (RRMM). Our research identifies variables influencing outcome measures to provide additional evidence for CAR-T product updates, clinical trial design, and clinical treatment guidance.Methods: The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) standard was followed for conducting this comprehensive review and meta-analysis, which was submitted to PROSPERO (CRD42023390037). From the inception of the study until 10 September 2022, PubMed, Web of Science, EMBASE, the Cochrane Library, CNKI, and WanFang databases were searched for eligible studies. Stata software (version 16.0) was used to assess effectiveness and safety outcomes.Results: Out of 875 papers, we found 21 relevant trials with 761 patients diagnosed as RRMM and were given anti-BCMA CAR-T treatment. The overall response rate (ORR) for the entire sample was 87% (95% CI: 80–93%) complete response rate (CRR) was 44% (95% CI: 34–54%). The minimal residual disease (MRD) negativity rate within responders was 78% (95% CI: 65–89%). The combined incidence of cytokine release syndrome was 82% (95% CI: 72–91%) and neurotoxicity was 10% (95% CI: 5%–17%). The median progression-free survival (PFS) was 8.77 months (95% CI: 7.48–10.06), the median overall survival (OS) was 18.87 months (95% CI: 17.20–20.54) and the median duration of response (DOR) was 10.32 months (95% CI: 9.34–11.31).Conclusion: According to this meta-analysis, RRMM patients who received anti-BCMA CAR-T treatment have demonstrated both effectiveness and safety. Subgroup analysis confirmed the anticipated inter-study heterogeneity and pinpointed potential factors contributing to safety and efficacy, which may help with the development of CAR-T cell studies and lead to optimized BCMA CAR-T-cell products.Systematic Review Registration:Clinicaltrials.gov, PROSPERO, CRD42023390037

    Anticancer Activities of Tumor-killing Nanorobots

    No full text
    Pharmaceutical uses of cancer therapeutics, such as intravenous thrombin to elicit blood coagulation, have been hampered by lack of tumor specificity. Based on rapid progress in DNA origami-based machines capable of transporting molecular payloads, DNA nanorobots have been constructed to specifically deliver therapeutic agents into tumor vessels

    Smart nanotherapeutic targeting of tumor vasculature

    No full text
    ConspectusThe past decades have witnessed the development of a field dedicated to targeting tumor vasculature for cancer therapy. In contrast to conventional chemotherapeutics that need to penetrate into tumor tissues for killing tumor cells, the agents targeting tumor vascular system have two major advantages: direct contact with vascular endothelial cells or the blood and less possibility to induce drug resistance because of high gene stability of endothelial cells. More specifically, various angiogenesis inhibitors (AIs) and vascular disrupting agents (VDAs) that block tumor blood supply to inhibit tumor progression, some of which have been applied clinically, have been described. However, off-target effects and high effective doses limit the utility of these formulations in cancer patients. Thus, new strategies with improved therapeutic efficacy and safety are needed for tumor vessel targeting therapy. With the burgeoning developments in nanotechnology, smart nanotherapeutics now offer unprecedented potential for targeting tumor vasculature. Based on specific structural and functional features of the tumor vasculature, a number of different nanoscale delivery systems have been proposed for cancer therapy. In this Account, we summarize several distinct strategies to modulate tumor vasculature with various smart nanotherapeutics for safe and effective tumor therapy developed by our research programs.Inspired by the blood coagulation cascade, we generated nanoparticle-mediated tumor vessel infarction strategies that selectively block tumor blood supply to starve the tumor to death. By specifically delivering thrombin loaded DNA nanorobots (Nanorobot-Th) into tumor vessels, an intratumoral thrombosis is triggered to induce vascular infarction and, ultimately, tumor necrosis. Mimicking the coagulation cascade, a smart polymeric nanogel achieves permanent and peripheral embolization of liver tumors. Considering the critical role of platelets in maintaining tumor vessel integrity, a hybrid (PLP-D-R) nanoparticle selectively depleting tumor-associated platelets (TAP) to boost tumor vessel permeability was developed for enhancing intratumoral drug accumulation. In addition, benefiting from a better understanding of the molecular and cellular underpinnings of vascular normalization, several tumor acidity responsive nanotherapeutics, encapsulating therapeutic peptides, and small interfering RNA were developed to correct the abnormal features of the tumor vasculature. This made the tumor vessels more efficient for drug delivery. While we are still exploring the mechanisms of action of these novel nanoformulations, we expect that the strategies summarized here will offer a promising platform to design effective next-generation nanotherapeutics against cancer and facilitate the clinical translation of smart nanotherapeutics that target tumor vasculature

    Modulating the tumor microenvironment with new therapeutic nanoparticles: a promising paradigm for tumor treatment

    No full text
    To better make nanomedicine entering the clinic, developing new rationally designed nanotherapeutics with a deeper understanding of tumor biology is required. The tumor microenvironment is similar to the inflammatory response in a healing wound, the milieu of which promotes tumor cell invasion and metastasis. Successful targeting of the microenvironmental components with effective nanotherapeutics to modulate the tumor microvessels or restore the homeostatic mechanisms in the tumor stroma will offer new hope for cancer treatment. We here highlight the progress in constructing nanotherapeutics to target or modulate the tumor microenvironment. We discuss the factors necessary for nanomedicines to become a new paradigm in cancer therapy, including the selection of drugs and therapeutic targets, controllable synthesis, and tempo-spatial drug release

    Preparation of Silica Aerogels by Ambient Pressure Drying without Causing Equipment Corrosion

    No full text
    The silica aerogels were prepared via a sol-gel technique and ambient pressure drying by using industrial solid wastes, dislodged sludges, as raw materials. A strategy was put forward to reduce the corrosion of equipment during the drying procedure. The pore structure, hydrophobicity, and thermal insulation property of the obtained samples were investigated in detail. The results show that the corrosion can be effectively avoided by using an equimolar mixture of trimethylchlorosilane (TMCS) and hexamethyldisilazane (HMDS) as silylation agents. At a Si:TMCS:HMDS molar ratio of 1:0.375:0.375, the silica aerogels possess a desirable pore structure with a pore volume of 3.3 ± 0.1 cm3/g and a most probable pore size of 18.5 nm, a high hydrophobicity with a water contact angle of 144.2 ± 1.1°, and a low thermal conductivity of 0.031 ± 0.001 W/(m∙K)

    A Methyl-Modified Silica Layer Supported on Porous Ceramic Membranes for the Enhanced Separation of Methyl Tert-Butyl Ether from Aqueous Solution

    No full text
    As a kind of volatile organic compound (VOC), methyl tert-butyl ether (MTBE) is hazardous to human health and destructive to the environment if not handled properly. MTBE should be removed before the release of wastewater. The present work supported the methyl-modified silica layer (MSL) on porous α-Al2O3 ceramic membranes with methyltrimethoxysilane (MTMS) as a precursor and pre-synthesized mesoporous silica microspheres as dopants by the sol-gel reaction and dip-coating method. MTMS is an environmentally friendly agent compared to fluorinated alkylsilane. The MSL-supported Al2O3 ceramic membranes were used for MTBE/water separation by pervaporation. The NMR spectra revealed that MTMS evolves gradually from an oligomer to a highly cross-linked methyl-modified silica species. Methyl-modified silica species and pre-synthesized mesoporous silica microspheres combine into hydrophobic mesoporous MSL. MSL makes the α-Al2O3 ceramic membranes transfer from amphiphilic to hydrophobic and oleophilic. The MSL-supported α-Al2O3 ceramic membranes (MSL-10) exhibit an MTBE/water separation factor of 27.1 and a total flux of 0.448 kg m−2 h−1, which are considerably higher than those of previously reported membranes that are modified by other alkylsilanes via the post-grafting method. The mesopores within the MSL provide a pathway for the transport of MTBE molecules across the membranes. The presence of methyl groups on the external and inner surface is responsible for the favorable separation performance and the outstanding long-term stability of the MSL-supported porous α-Al2O3 ceramic membranes

    The Extratropical Northern Hemisphere Temperature Reconstruction during the Last Millennium Based on a Novel Method.

    No full text
    Large-scale climate history of the past millennium reconstructed solely from tree-ring data is prone to underestimate the amplitude of low-frequency variability. In this paper, we aimed at solving this problem by utilizing a novel method termed "MDVM", which was a combination of the ensemble empirical mode decomposition (EEMD) and variance matching techniques. We compiled a set of 211 tree-ring records from the extratropical Northern Hemisphere (30-90°N) in an effort to develop a new reconstruction of the annual mean temperature by the MDVM method. Among these dataset, a number of 126 records were screened out to reconstruct temperature variability longer than decadal scale for the period 850-2000 AD. The MDVM reconstruction depicted significant low-frequency variability in the past millennium with evident Medieval Warm Period (MWP) over the interval 950-1150 AD and pronounced Little Ice Age (LIA) cumulating in 1450-1850 AD. In the context of 1150-year reconstruction, the accelerating warming in 20th century was likely unprecedented, and the coldest decades appeared in the 1640s, 1600s and 1580s, whereas the warmest decades occurred in the 1990s, 1940s and 1930s. Additionally, the MDVM reconstruction covaried broadly with changes in natural radiative forcing, and especially showed distinct footprints of multiple volcanic eruptions in the last millennium. Comparisons of our results with previous reconstructions and model simulations showed the efficiency of the MDVM method on capturing low-frequency variability, particularly much colder signals of the LIA relative to the reference period. Our results demonstrated that the MDVM method has advantages in studying large-scale and low-frequency climate signals using pure tree-ring data

    Shape-controlled synthesis of FeNi 3

    No full text

    The Influence of FY-4A High-Frequency LST Data on Data Assimilation in a Climate Model

    No full text
    Based on the Beijing Climate Center’s land surface model BCC_AVIM2.0, an ensemble Kalman filter (EnKF) algorithm is developed to assimilate the land surface temperature (LST) product of the first satellite of Fengyun-4 series meteorological satellites of China to study the influence of LST data with different time frequencies on the surface temperature data assimilations. The MODIS daytime and nighttime LST products derived from Terra and Aqua satellites are used as independent validation data to test the assimilation results. The results show that diurnal variation information in the FY-4A LST data has significant effect on the assimilation results. When the time frequencies of the assimilated FY-4A LST data are sufficient, the assimilation scheme can effectively reduce the errors and the assimilation results reflect more reasonable spatial and temporal distributions. The assimilation experiments with a 3 h time frequency show less bias as well as RMSEs and higher temporal correlations than that of the model simulations at both daytime and nighttime periods. As the temporal frequency of assimilated LST observations decreases, the assimilation effects gradually deteriorate. When diurnal variation information is not considered at all in the assimilation, the assimilation with 24 h time frequency showed the largest errors and smallest time correlations in all experiments. The results demonstrate the potential of assimilating high-frequency FY-4A LST data to improve the performance of the BCC_AVIM2.0 land surface model. Furthermore, this study indicates that the diurnal variation information is a necessary factor needed to be considered when assimilating the FY-4A LST
    • …
    corecore