836 research outputs found

    Minimal archi-texture for neutrino mass matrices

    Full text link
    The origin of the observed masses and mixing angles of quarks and leptons is one of imperative subjects in and beyond the standard model. Toward a deeper understanding of flavor structure, we investigate in this paper the minimality of fermion mass (Yukawa) matrices in unified theory. That is, the simplest matrix form is explored in light of the current experimental data for quarks and leptons, including the recent measurements of quark CP violation and neutrino oscillations. Two types of neutrino mass schemes are particularly analyzed; (i) Majorana masses of left-handed neutrinos with unspecified mechanism and (ii) Dirac and Majorana masses introducing three right-handed neutrinos. As a result, new classes of neutrino mass matrices are found to be consistent to the low-energy experimental data and high-energy unification hypothesis. For distinctive phenomenological implications of the minimal fermion mass textures, we discuss flavor-violating decay of charged leptons, the baryon asymmetry of the universe via thermal leptogenesis, neutrino-less double beta decay, and low-energy leptonic CP violation.Comment: 37 pages, 6 figure

    Neutrino mixing and CP violation from Dirac-Majorana bimaximal mixture and quark-lepton unification

    Full text link
    We demonstrate that only two ansatz can produce the features of the neutrino mixing angles. The first ansatz comes from the quark-lepton grand unification; ÎœDi=VCKMΜα\nu_{Di} = V_{CKM} \nu_{\alpha} is satisfied for left-handed neutrinos, where ÎœDi\nu_{Di} are the Dirac mass eigenstates and Μα\nu_{\alpha} are the flavour eigenstates. The second ansatz comes from the assumption; ÎœDi=UbimaximalÎœi\nu_{Di} = U_{bimaximal} \nu_{i} is satisfied between the Dirac mass eigenstates ÎœDi\nu_{Di} and the light Majorana neutrino mass eigenstates Îœi\nu_{i}, where UbimaximalU_{bimaximal} is the bimaximal mixing matrix. By these two ansatz, the Maki-Nakagawa-Sakata matrix is given by UMNS=VCKM†UbimaximalU_{MNS} = V_{CKM}^\dagger U_{bimaximal}. We find that in this model the novel relation Ξsol+Ξ13=π/4\theta_{sol} + \theta_{13} = \pi/4 is satisfied, where Ξsol\theta_{sol} and Ξ13\theta_{13} are solar and CHOOZ angle respectively. This "Solar-CHOOZ Complementarity" relation indicates that only if the CHOOZ angle Ξ13\theta_{13} is sizable, the solar angle Ξsol\theta_{sol} can deviate from the maximal mixing. We also infer the CP violation in neutrino oscillations. The leptonic Dirac CP phase ÎŽMNS\delta_{MNS} is predicted as sin⁥ΎMNS≃Aλ2η\sin \delta_{MNS} \simeq A \lambda^2 \eta, where A,λ,ηA, \lambda, \eta are the CKM parameters in Wolfenstein parametrization. Furthermore, we remark that the ratio of the Jarlskog CP violation factor for quarks and leptons is important, because the large uncertainty on η\eta is cancelled out in the ratio, RJ≡JCKM/JMNS≃42Aλ3≃5×10−2R_J \equiv J_{CKM}/J_{MNS} \simeq 4\sqrt{2} A \lambda^3 \simeq 5 \times 10^{-2}.Comment: 9 pages, no figures; v2 references added, v3 references adde

    Global fits to neutrino oscillation data

    Get PDF
    I summarize the determination of neutrino oscillation parameters within the three-flavor framework from world neutrino oscillation data with date of May 2006, including the first results from the MINOS long-baseline experiment. It is illustrated how the determination of the leading "solar" and "atmospheric" parameters, as well as the bound on ξ13\theta_{13} emerge from an interplay of various complementary data sets. Furthermore, I discuss possible implications of sub-leading three-flavor effects in present atmospheric neutrino data induced by Δm212\Delta m^2_{21} and ξ13\theta_{13} for the bound on ξ13\theta_{13} and non-maximal values of ξ23\theta_{23}, emphasizing, however, that these effects are not statistically significant at present. Finally, in view of the upcoming MiniBooNE results I briefly comment on the problem to reconcile the LSND signal.Comment: 5 pages, 5 figures, talk presented at the SNOW2006 workshop, Stockholm, 2-6 May 200

    Quantum Isometries of the finite noncommutative geometry of the Standard Model

    Full text link
    We compute the quantum isometry group of the finite noncommutative geometry F describing the internal degrees of freedom in the Standard Model of particle physics. We show that this provides genuine quantum symmetries of the spectral triple corresponding to M x F where M is a compact spin manifold. We also prove that the bosonic and fermionic part of the spectral action are preserved by these symmetries.Comment: 29 pages, no figures v3: minor change

    Neutrino signals from electroweak bremsstrahlung in solar WIMP annihilation

    Full text link
    Bremsstrahlung of WW and ZZ gauge bosons, or photons, can be an important dark matter annihilation channel. In many popular models in which the annihilation to a pair of light fermions is helicity suppressed, these bremsstrahlung processes can lift the suppression and thus become the dominant annihilation channels. The resulting dark matter annihilation products contain a large, energetic, neutrino component. We consider solar WIMP annihilation in the case where electroweak bremsstrahlung dominates, and calculate the resulting neutrino spectra. The flux consists of primary neutrinos produced in processes such as χχ→ΜˉΜZ\chi\chi\rightarrow \bar{\nu}\nu Z and χχ→ΜˉℓW\chi\chi\rightarrow \bar{\nu}\ell W, and secondary neutrinos produced via the decays of gauge bosons and charged leptons. After dealing with the neutrino propagation and flavour evolution in the Sun, we consider the prospects for detection in neutrino experiments on Earth. By comparing our signal with that for annihilation to W+W−W^+W^-, we show that the detection prospects for the bremsstrahlung annihilation channel are favourable.Comment: 18 pages, 5 figures. Discussion expanded; matches published versio

    Exploration of Possible Quantum Gravity Effects with Neutrinos II: Lorentz Violation in Neutrino Propagation

    Full text link
    It has been suggested that the interactions of energetic particles with the foamy structure of space-time thought to be generated by quantum-gravitational (QG) effects might violate Lorentz invariance, so that they do not propagate at a universal speed of light. We consider the limits that may be set on a linear or quadratic violation of Lorentz invariance in the propagation of energetic neutrinos, v/c=[1 +- (E/M_\nuQG1)] or [1 +- (E/M_\nu QG2}^2], using data from supernova explosions and the OPERA long-baseline neutrino experiment.Comment: 8 pages, 6 figures, proceedings for invited talk by A.Sakharov at DISCRETE'08, Valencia, Spain; December 200

    Neutrino Physics at the Turn of the Millenium

    Get PDF
    Recent solar & atmospheric nu-data strongly indicate need for physics beyond the Standard Model. I review the ways of reconciling them in terms of 3-nu oscillations. Though not implied by data, bi-maximal nu-mixing models emerge as a possibility. SUSY with broken R-parity provides an attractive way to incorporate it, opening the possibility of testing nu-anomalies at high- energy colliders such as the LHC or at the upcoming long-baseline or nu- factory experiments. Reconciling, in addition, the LSND hint requires a fourth, light sterile neutrino, nus. The simplest are the most symmetric scenarios, in which 2 of the 4 neutrinos are maximally-mixed and lie at the LSND scale, while the others are at the solar scale. The lightness of nus, the nearly maximal atmospheric mixing, and the solar/atmospheric splittings all follow naturally from the assumed lepton-number symmetry and its breaking. These basic schemes can be distinguished at neutral-current-sensitive solar & atmospheric neutrino experiments such as SNO. However underground experiments have not yet proven neutrino masses, as there are many alternatives. For example flavour changing interactions can play an important role in the explanation of solar and contained atmospheric data and could be tested e.g through \mu \to e + \gamma, \mu-e conversion in nuclei, unaccompanied by neutrino-less double beta decay. Conversely, a short-lived numu might play a role in the explanation of the atmospheric data. Finally, in the presence of a nus, a long-lived heavy nutau could delay the time at which the matter and radiation contributions to the energy density of the Universe become equal, reducing density fluctuations on smaller scales, thus saving the standard CDM scenario, while the light nue, numu and nus would explain the solar & atmospheric data.Comment: Invited talk at 2nd International Conference on Non-Accelerator New Physics (NANP-99), Dubna, June 28 - July 3, 199

    Scalar Bilepton Dark Matter

    Full text link
    In this work we show that 3-3-1 model with right-handed neutrinos has a natural weakly interacting massive particle (WIMP) dark mater candidate. It is a complex scalar with mass of order of some hundreds of GeV which carries two units of lepton number, a scalar bilepton. This makes it a very peculiar WIMP, very distinct from Supersymmetric or Extra-dimension candidates. Besides, although we have to make some reasonable assumptions concerning the several parameters in the model, no fine tunning is required in order to get the correct dark matter abundance. We also analyze the prospects for WIMP direct detection by considering recent and projected sensitivities for WIMP-nucleon elastic cross section from CDMS and XENON Collaborations.Comment: 21 pages, 8 figures, uses iopart.cls, same text as published version with a small different arrangement of figure
    • 

    corecore