732 research outputs found
Atomic dynamics in evaporative cooling of trapped alkali atoms in strong magnetic fields
We investigate how the nonlinearity of the Zeeman shift for strong magnetic
fields affects the dynamics of rf field induced evaporative cooling in magnetic
traps. We demonstrate for the 87-Rb and 23-Na F=2 trapping states with wave
packet simulations how the cooling stops when the rf field frequency goes below
a certain limit (for the 85-Rb F=2 trapping state the problem does not appear).
We examine the applicability of semiclassical models for the strong field case
as an extension of our previous work [Phys. Rev. A 58, 3983 (1998)]. Our
results verify many of the aspects observed in a recent Rb experiment
[Phys. Rev. A 60, R1759 (1999)].Comment: 9 pages, RevTex, eps figures embedde
Environment-dependent dissipation in quantum Brownian motion
The dissipative dynamics of a quantum Brownian particle is studied for
different types of environment. We derive analytic results for the time
evolution of the mean energy of the system for Ohmic, sub-Ohmic and super-Ohmic
environments, without performing the Markovian approximation. Our results allow
to establish a direct link between the form of the environmental spectrum and
the thermalization dynamics. This in turn leads to a natural explanation of the
microscopic physical processes ruling the system time evolution both in the
short-time non-Markovian region and in the long-time Markovian one. Our
comparative study of thermalization for different environments sheds light on
the physical contexts in which non-Markovian dissipation effects are dominant.Comment: 10 pages, 6 figures, v2: added new references and paragraph
Center of mass rotation and vortices in an attractive Bose gas
The rotational properties of an attractively interacting Bose gas are studied
using analytical and numerical methods. We study perturbatively the ground
state phase space for weak interactions, and find that in an anharmonic trap
the rotational ground states are vortex or center of mass rotational states;
the crossover line separating these two phases is calculated. We further show
that the Gross-Pitaevskii equation is a valid description of such a gas in the
rotating frame and calculate numerically the phase space structure using this
equation. It is found that the transition between vortex and center of mass
rotation is gradual; furthermore the perturbative approach is valid only in an
exceedingly small portion of phase space. We also present an intuitive picture
of the physics involved in terms of correlated successive measurements for the
center of mass state.Comment: version2, 17 pages, 5 figures (3 eps and 2 jpg
Superconducting, Insulating, and Anomalous Metallic Regimes in a Gated Two-Dimensional Semiconductor-Superconductor Array
The superconductor-insulator transition in two dimensions has been widely
investigated as a paradigmatic quantum phase transition. The topic remains
controversial, however, because many experiments exhibit a metallic regime with
saturating low-temperature resistance, at odds with conventional theory. Here,
we explore this transition in a novel, highly controllable system, a
semiconductor heterostructure with epitaxial Al, patterned to form a regular
array of superconducting islands connected by a gateable quantum well. Spanning
nine orders of magnitude in resistance, the system exhibits regimes of
superconducting, metallic, and insulating behavior, along with signatures of
flux commensurability and vortex penetration. An in-plane magnetic field
eliminates the metallic regime, restoring the direct superconductor-insulator
transition, and improves scaling, while strongly altering the scaling exponent
Population trapping due to cavity losses
In population trapping the occupation of a decaying quantum level keeps a
constant non-zero value. We show that an atom-cavity system interacting with an
environment characterized by a non-flat spectrum, in the non-Markovian limit,
exhibits such a behavior, effectively realizing the preservation of
nonclassical states against dissipation. Our results allow to understand the
role of cavity losses in hybrid solid state systems and pave the way to the
proper description of leakage in the recently developed cavity quantum
electrodynamic systems.Comment: 4 pages, 3 figures, version accepted for publication on Phys. Rev.
Quantum and Semiclassical Calculations of Cold Atom Collisions in Light Fields
We derive and apply an optical Bloch equation (OBE) model for describing
collisions of ground and excited laser cooled alkali atoms in the presence of
near-resonant light. Typically these collisions lead to loss of atoms from
traps. We compare the results obtained with a quantum mechanical complex
potential treatment, semiclassical Landau-Zener models with decay, and a
quantum time-dependent Monte-Carlo wave packet (MCWP) calculation. We formulate
the OBE method in both adiabatic and diabatic representations. We calculate the
laser intensity dependence of collision probabilities and find that the
adiabatic OBE results agree quantitatively with those of the MCWP calculation,
and qualitatively with the semiclassical Landau-Zener model with delayed decay,
but that the complex potential method or the traditional Landau-Zener model
fail in the saturation limit.Comment: 21 pages, RevTex, 7 eps figures embedded using psfig, see also
http://www.physics.helsinki.fi/~kasuomin
Collisions of cold magnesium atoms in a weak laser field
We use quantum scattering methods to calculate the light-induced collisional
loss of laser-cooled and trapped magnesium atoms for detunings up to 30 atomic
linewidths to the red of the 1S_0-1P_1 cooling transition. Magnesium has no
hyperfine structure to complicate the theoretical studies. We evaluate both the
radiative and nonradiative mechanisms of trap loss. The radiative escape
mechanism via allowed 1Sigma_u excitation is dominant for more than about one
atomic linewidth detuning. Molecular vibrational structure due to
photoassociative transitions to bound states begins to appear beyond about ten
linewidths detuning.Comment: 4 pages with 3 embedded figure
Exact Soliton-like Solutions of the Radial Gross-Pitaevskii Equation
We construct exact ring soliton-like solutions of the cylindrically symmetric
(i.e., radial) Gross- Pitaevskii equation with a potential, using the
similarity transformation method. Depending on the choice of the allowed free
functions, the solutions can take the form of stationary dark or bright rings
whose time dependence is in the phase dynamics only, or oscillating and
bouncing solutions, related to the second Painlev\'e transcendent. In each case
the potential can be chosen to be time-independent.Comment: 8 pages, 7 figures. Version 2: stability analysis of the dark
solutio
Open system dynamics with non-Markovian quantum jumps
We discuss in detail how non-Markovian open system dynamics can be described
in terms of quantum jumps [J. Piilo et al., Phys. Rev. Lett. 100, 180402
(2008)]. Our results demonstrate that it is possible to have a jump description
contained in the physical Hilbert space of the reduced system. The developed
non-Markovian quantum jump (NMQJ) approach is a generalization of the Markovian
Monte Carlo Wave Function (MCWF) method into the non-Markovian regime. The
method conserves both the probabilities in the density matrix and the norms of
the state vectors exactly, and sheds new light on non-Markovian dynamics. The
dynamics of the pure state ensemble illustrates how local-in-time master
equation can describe memory effects and how the current state of the system
carries information on its earlier state. Our approach solves the problem of
negative jump probabilities of the Markovian MCWF method in the non-Markovian
regime by defining the corresponding jump process with positive probability.
The results demonstrate that in the theoretical description of non-Markovian
open systems, there occurs quantum jumps which recreate seemingly lost
superpositions due to the memory.Comment: 19 pages, 10 figures. V2: Published version. Discussion section
shortened and some other minor changes according to the referee's suggestion
- …