We derive and apply an optical Bloch equation (OBE) model for describing
collisions of ground and excited laser cooled alkali atoms in the presence of
near-resonant light. Typically these collisions lead to loss of atoms from
traps. We compare the results obtained with a quantum mechanical complex
potential treatment, semiclassical Landau-Zener models with decay, and a
quantum time-dependent Monte-Carlo wave packet (MCWP) calculation. We formulate
the OBE method in both adiabatic and diabatic representations. We calculate the
laser intensity dependence of collision probabilities and find that the
adiabatic OBE results agree quantitatively with those of the MCWP calculation,
and qualitatively with the semiclassical Landau-Zener model with delayed decay,
but that the complex potential method or the traditional Landau-Zener model
fail in the saturation limit.Comment: 21 pages, RevTex, 7 eps figures embedded using psfig, see also
http://www.physics.helsinki.fi/~kasuomin