178 research outputs found
Dark matter annihilation and non-thermal Sunyaev-Zel'dovich effect: II. dwarf spheroidal galaxy
We calculate the CMB temperature distortion due to the energetic electrons
and positrons produced by dark matter annihilation (Sunyaev-Zel'dovich effect),
in dwarf spheroidal galaxies (dSphs). In the calculation we have included two
important effects which were previously ignored. First we show that the
electron-positron pairs with energy less than GeV, which were neglected in
previous calculation, could contribute a significant fraction of the total
signal. Secondly we also consider the full effects of diffusion loss, which
could significantly reduce the density of electron-positron pairs at the center
of cuspy halos. For neutralinos, we confirm that detecting such kind of SZ
effect is beyond the capability of the current or even the next generation
experiments. In the case of light dark matter (LDM) the signal is much larger,
but even in this case it is only marginally detectable with the next generation
of experiment such as ALMA. We conclude that similar to the case of galaxy
clusters, in the dwarf galaxies the SZ_2DM} effect is not a strong probe of
DM annihilations.Comment: 22 pages, 9 figures, version accepted by JCA
A Lensing Reconstruction of Primordial Cosmic Microwave Background Polarization
We discuss a possibility to directly reconstruct the CMB polarization field
at the last scattering surface by accounting for modifications imposed by the
gravitational lensing effect. The suggested method requires a tracer field of
the large scale structure lensing potentials that deflected propagating CMB
photons from the last scattering surface. This required information can come
from a variety of observations on the large scale structure matter
distribution, including convergence reconstructed from lensing shear studies
involving galaxy shapes. In the case of so-called curl, or B,-modes of CMB
polarization, the reconstruction allows one to identify the distinct signature
of inflationary gravitational waves.Comment: 6 pages, 2 figures; PRD submitte
The thermal and kinematic Sunyaev-Zel'dovich effects revisited
This paper shows that a simple convolution integral expression based on the
mean value of the isotropic frequency distribution corresponding to photon
scattering off electrons leads to useful analytical expressions describing the
thermal Sunyaev-Zel'dovich effect. The approach, to first order in the Compton
parameter is able to reproduce the Kompaneets equation describing the effect.
Second order effects in the parameter induce a slight
increase in the crossover frequency.Comment: 7 pages, 2 figure
Creation of the CMB spectrum: precise analytic solutions for the blackbody photosphere
The blackbody spectrum of CMB was created in the blackbody photosphere at
redshifts z>2x10^6. At these early times, the Universe was dense and hot enough
that complete thermal equilibrium between baryonic matter (electrons and ions)
and photons could be established. Any perturbation away from the blackbody
spectrum was suppressed exponentially. New physics, for example annihilation
and decay of dark matter, can add energy and photons to CMB at redshifts z>10^5
and result in a Bose-Einstein spectrum with a non-zero chemical potential
(). Precise evolution of the CMB spectrum around the critical redshift of
z~2x10^6 is required in order to calculate the -type spectral distortion
and constrain the underlying new physics. Although numerical calculation of
important processes involved (double Compton process, comptonization and
bremsstrahlung) is not difficult, analytic solutions are much faster and easier
to calculate and provide valuable physical insights. We provide precise (better
than 1%) analytic solutions for the decay of , created at an earlier
epoch, including all three processes, double Compton, Compton scattering on
thermal electrons and bremsstrahlung in the limit of small distortions. This is
a significant improvement over the existing solutions with accuracy ~10% or
worse. We also give a census of important sources of energy injection into CMB
in standard cosmology. In particular, calculations of distortions from
electron-positron annihilation and primordial nucleosynthesis illustrate in a
dramatic way the strength of the equilibrium restoring processes in the early
Universe. Finally, we point out the triple degeneracy in standard cosmology,
i.e., the and distortions from adiabatic cooling of baryons and
electrons, Silk damping and annihilation of thermally produced WIMP dark matter
are of similar order of magnitude (~ 10^{-8}-10^{-10})
Microwave polarization in the direction of galaxy clusters induced by the CMB quadrupole anisotropy
Electron scattering induces a polarization in the cosmic microwave background
(CMB) signal measured in the direction of a galaxy cluster due to the presence
of a quadrupole component in the CMB temperature distribution. Measuring the
polarization towards distant clusters provides the unique opportunity to
observe the evolution of the CMB quadrupole at moderate redshifts, z~0.5-3. We
demonstrate that for the local cluster population the polarization degree will
depend on the cluster celestial position. There are two extended regions in the
sky, which are opposite to each other, where the polarization is maximal,
0.1(tau/0.02) microK in the Rayleigh-Jeans part of the CMB spectrum (tau being
the Thomson optical depth across the cluster) exceeding the contribution from
the cluster transverse peculiar motion if v_t<1300 km/s. One can hope to detect
this small signal by measuring a large number of clusters, thereby effectively
removing the systematic contribution from other polarization components
produced in clusters. These polarization effects, which are of the order of
(v_t/c)^2 tau, (v_t/c) tau^2 and (kT_e/m_ec^2) tau^2, as well as the
polarization due to the CMB quadrupole, were previously calculated by Sunyaev
and Zel'dovich for the Rayleigh-Jeans region. We fully confirm their earlier
results and present exact frequency dependencies for all these effects. The
polarization is considerably higher in the Wien region of the CMB spectrum.Comment: 8 pages, 5 figures, submitted to MNRA
Direct and Indirect Detection of Dark Matter in D6 Flavor Symmetric Model
We study a fermionic dark matter in a non-supersymmetric extension of the
standard model with a family symmetry based on D6xZ2xZ2. In our model, the
final state of the dark matter annihilation is determined to be e+ e- by the
flavor symmetry, which is consistent with the PAMELA result. At first, we show
that our dark matter mass should be within the range of 230 GeV - 750 GeV in
the WMAP analysis combined with mu to e gamma constraint. Moreover we
simultaneously explain the experiments of direct and indirect detection, by
simply adding a gauge and D6 singlet real scalar field. In the direct detection
experiments, we show that the lighter dark matter mass ~ 230 GeV and the
lighter standard model Higgs boson ~ 115 GeV is in favor of the observed bounds
reported by CDMS II and XENON100. In the indirect detection experiments, we
explain the positron excess reported by PAMELA through the Breit-Wigner
enhancement mechanism. We also show that our model is consistent with no
antiproton excess suggested by PAMELA.Comment: 20 pages, 9 figures, 2 tables, accepted version for publication in
European Physical Journal
DT/T beyond linear theory
The major contribution to the anisotropy of the temperature of the Cosmic
Microwave Background (CMB) radiation is believed to come from the interaction
of linear density perturbations with the radiation previous to the decoupling
time. Assuming a standard thermal history for the gas after recombination, only
the gravitational field produced by the linear density perturbations present on
a universe can generate anisotropies at low z (these
anisotropies would manifest on large angular scales). However, secondary
anisotropies are inevitably produced during the nonlinear evolution of matter
at late times even in a universe with a standard thermal history. Two effects
associated to this nonlinear phase can give rise to new anisotropies: the
time-varying gravitational potential of nonlinear structures (Rees-Sciama RS
effect) and the inverse Compton scattering of the microwave photons with hot
electrons in clusters of galaxies (Sunyaev-Zeldovich SZ effect). These two
effects can produce distinct imprints on the CMB temperature anisotropy. We
discuss the amplitude of the anisotropies expected and the relevant angular
scales in different cosmological scenarios. Future sensitive experiments will
be able to probe the CMB anisotropies beyong the first order primary
contribution.Comment: plain tex, 16 pages, 3 figures. Proceedings of the Laredo Advance
School on Astrophysics "The universe at high-z, large-scale structure and the
cosmic microwave background". To be publised by Springer-Verla
Astrophysical constraints on primordial black holes in Brans-Dicke theory
We consider cosmological evolution in Brans-Dicke theory with a population of
primordial black holes. Hawking radiation from the primordial black holes
impacts various astrophysical processes during the evolution of the Universe.
The accretion of radiation by the black holes in the radiation dominated era
may be effective in imparting them a longer lifetime. We present a detailed
study of how this affects various standard astrophysical constraints coming
from the evaporation of primordial black holes. We analyze constraints from the
present density of the Universe, the present photon spectrum, the distortion of
the cosmic microwave background spectrum and also from processes affecting
light element abundances after nucleosynthesis. We find that the constraints on
the initial primordial black hole mass fractions are tightened with increased
accretion efficiency.Comment: 15 page
On the Sunyaev-Zel'dovich effect from dark matter annihilation or decay in galaxy clusters
We revisit the prospects for detecting the Sunyaev Zel'dovich (SZ) effect
induced by dark matter (DM) annihilation or decay. We show that with standard
(or even extreme) assumptions for DM properties, the optical depth associated
with relativistic electrons injected from DM annihilation or decay is much
smaller than that associated with thermal electrons, when averaged over the
angular resolution of current and future experiments. For example, we find:
(depending on the assumptions) for \mchi
= 1 GeV and a density profile for a template cluster
located at 50 Mpc and observed within an angular resolution of , compared
to . This, together with a full spectral
analysis, enables us to demonstrate that, for a template cluster with generic
properties, the SZ effect due to DM annihilation or decay is far below the
sensitivity of the Planck satellite. This is at variance with previous claims
regarding heavier annihilating DM particles. Should DM be made of lighter
particles, the current constraints from 511 keV observations on the
annihilation cross section or decay rate still prevent a detectable SZ effect.
Finally, we show that spatial diffusion sets a core of a few kpc in the
electron distribution, even for very cuspy DM profiles, such that improving the
angular resolution of the instrument, e.g. with ALMA, does not necessarily
improve the detection potential. We provide useful analytical formulae
parameterized in terms of the DM mass, decay rate or annihilation cross section
and DM halo features, that allow quick estimates of the SZ effect induced by
any given candidate and any DM halo profile.Comment: 27 p, 6 figs, additional section on spatial diffusion effects.
Accepted for publication in JCA
Constraints on the SZ Power Spectrum on Degree Angular Scales in WMAP Data
The Sunyaev-Zel'dovich (SZ) effect has a distinct spectral signature that
allows its separation from fluctuations in the cosmic microwave background
(CMB) and foregrounds. Using CMB anisotropies measured in Wilkinson Microwave
Anisotropy Probe's five-year maps, we constrain the SZ fluctuations at large,
degree angular scales corresponding to multipoles in the range from 10 to 400.
We provide upper bounds on SZ fluctuations at multipoles greater than 50, and
find evidence for a hemispherically asymmetric signal at ten degrees angular
scales. The amplitude of the detected signal cannot be easily explained with
the allowed number density and temperature of electrons in the Galactic halo.
We have failed to explain the excess signal as a residual from known Galactic
foregrounds or instrumental uncertainties such as 1/f-noise.Comment: 14 pages, 3 figures, 2 tables. Simple typos fixe
- …