6 research outputs found

    Enhanced Hall mobility in graphene-on-electronic-grade diamond

    Get PDF
    The outstanding electronic properties of graphene make this material a candidate for many applications, for instance, ultra-fast transistors. However, self-heating and especially the detrimental influence of available supporting substrates have impeded progress in this field. In this study, we fabricate graphene-diamond heterostructures by transferring graphene to an ultra-pure single-crystalline diamond substrate. Hall-effect measurements were conducted at 80 to 300 K on graphene Hall bars to investigate the charge transport properties in these devices. Enhanced hole mobility of 2750 cm2 V1 s1 could be observed at room-temperature when using diamond with reduced nitrogen (N <sup>0>/sup><sub>s</sub>) impurity concentration. In addition, by electrostatically varying the carrier concentration, an upper limit for mobility is determined in the devices. The results are promising for enabling carbon–carbon (C-C) devices for room-temperature applications

    Investigation of transferred-electron oscillations in diamond

    No full text
    The recent discovery of Negative Differential Mobility (NDM) in intrinsic single-crystalline diamond enables the development of devices for high frequency applications. The Transferred-Electron Oscillator (TEO) is one example of such devices that uses the benefit of NDM to generate continuous oscillations. This paper presents theoretical investigations of a diamond TEO in the temperature range of 110 to 140K where NDM has been observed. Our simulations map out the parameter space in which transferred-electron oscillations are expected to occur for a specific device geometry. The results are promising and indicate that it is possible to fabricate diamond based TEO devices.Correction in: Applied Physics Letters 108(23) article number 239901 DOI: 10.1063/1.4953887</p
    corecore