9 research outputs found

    Outcomes of lung transplantation in adults with bronchiectasis

    Get PDF
    BACKGROUND: Lung transplantation is a well-established treatment for end-stage non-cystic fibrosis bronchiectasis (BR), though information regarding outcomes of transplantation remains limited. Our results of lung transplantation for Br are reported here. METHODS: A retrospective review of case notes and transplantation databases was conducted for patients that had underwent lung transplantation for bronchiectasis at the Freeman Hospital between 1990 and 2013. RESULTS: Fourty two BR patients underwent lung transplantation, the majority (39) having bilateral sequential lung transplantation. Mean age at transplantation was 47.1 years. Pre-transplantation osteoporosis was a significant non-pulmonary morbidity (48%). Polymicrobial infection was common, with Pseudomonas aeruginosa infection frequently but not universally observed (67%). Forced expiratory volume in 1 second (% predicted) improved from a pre-transplantation mean of 0.71 L (22% predicted) to 2.56 L (79 % predicted) at 1-year post-transplantation. Our survival results were 74% at 1 year, 64% at 3 years, 61% at 5 years and 48% at 10 years. Sepsis was a common cause of early post-transplantation deaths. CONCLUSIONS: Lung transplantation for end-stage BR is a useful therapeutic option, with good survival and lung function outcomes. Survival values were similar to other bilateral lung transplants at our centre. Pre-transplantation Pseudomonas infection is common

    Combined infection training-a pioneering collaborative approach to educating infection specialists.

    No full text
    This commentary discusses the recent pioneering overhaul of training for UK doctors wishing to pursue a career in the infection specialities. Changes include the introduction of new curricula that embrace increased collaboration between the laboratory-based and clinical specialties and a broad-based infection training period, named 'Combined Infection Training', which has never been seen before. Here, we discuss the benefits and challenges associated with the collaborative approach to training with particular reference to points that educators responsible for training programme design need to consider. We also describe our own local experiences in adopting a proactive, multidisciplinary approach to address potential obstacles prospectively

    Novel Analysis of Immune Cells from Nasal Microbiopsy Demonstrates Reliable, Reproducible Data for Immune Populations, and Superior Cytokine Detection Compared to Nasal Wash

    No full text
    The morbidity and mortality related to respiratory tract diseases is enormous, with hundreds of millions of individuals afflicted and four million people dying each year. Understanding the immunological processes in the mucosa that govern outcome following pathogenic encounter could lead to novel therapies. There is a need to study responses at mucosal surfaces in humans for two reasons: (i) Immunological findings in mice, or other animals, often fail to translate to humans. (ii) Compartmentalization of the immune system dictates a need to study sites where pathogens reside. In this manuscript, we describe two novel non-invasive nasal mucosal microsampling techniques and their use for measuring immunological parameters: 1) using nasal curettes to collect cells from the inferior turbinate and; 2) absorptive matrices to collect nasal lining fluid. Both techniques were well tolerated and yielded reproducible and robust data. We demonstrated differences in immune populations and activation state in nasal mucosa compared to blood as well as compared to nasopharyngeal lumen in healthy adults. We also found superior cytokine detection with absorptive matrices compared to nasal wash. These techniques are promising new tools that will facilitate studies of the immunological signatures underlying susceptibility and resistance to respiratory infections

    Nasal curettage yields reproducible and consistent results over time.

    No full text
    <p>(A) The percentage of granulocytes (closed circles) and T cells (open circles) in 218 nasal cell samples collected over a five month period (n = 117 volunteers, sampled up to five times). Individual samples and loess curves are depicted for both populations. (B, C) The correlation for individuals in four repeated measurements over a 33-day period for (B) granulocytes and (C) T cells.</p

    Comparison of samples collected by nasal wash and nasal curette.

    No full text
    <p>(A) Epithelial (open circles) and immune (closed circles) and cell yields were compared between nasal wash pellets and nasal curette samples. Individuals samples and median and interquartile range are shown. (B) Median proportions of granulocytes, T cells, monocytes, lineage<sup>-</sup> HLA-DR<sup>+</sup> and uncharacterized cells among immune cells in nasal curette (n = 139 individuals) and nasal wash (n = 8) samples. *p < 0.05, ***p < 0.001, ****p < 0.0001 Mann-Whitney test.</p

    Comparison of samples from nasal mucosa and blood.

    No full text
    <p>(A) Median proportions of granulocytes, T cells, monocytes, lineage<sup>-</sup> HLA-DR<sup>+</sup> and uncharacterized cells among immune cells in blood (n = 10) and nasal curette (n = 139). **** p < 0.0001 Mann-Whitney test. (B) The percentage of HLA-DR<sup>+</sup> T cells in blood and nasal curette samples and mean fluorescent intensity (MFI) of HLA-DR and CD66b on granulocytes was measured for blood, nasal curette and nasal wash (n = 8) samples. Median and interquartile range are shown. *p < 0.05, ***p < 0.001 Kruskal-Wallis, followed by Dunn鈥檚 Multiple Comparison Test. (C) Multi-dimensional scaling analysis shows the clustering of samples from blood (grey circles), nasal curette (open squares, 11 randomly selected) and nasal wash (black triangles). The epithelial cell yield, activation state of granulocytes and composition of the immune cells were taken into account. Kruskal stress = 5.8% and Analysis of Similarity ANOSIM p-value = 0.001.</p
    corecore