39 research outputs found

    Cross-diagnostic validity in a generic instrument: an example from the Functional Independence Measure in Scandinavia

    Get PDF
    BACKGROUND: To analyse the cross-diagnostic validity of the Functional Independence Measure (FIM™) motor items in patients with spinal cord injury, stroke and traumatic brain injury and the comparability of summed scores between these diagnoses. METHODS: Data from 471 patients on FIM™ motor items at admission (stroke 157, spinal cord injury 157 and traumatic brain injury 157), age range 11–90 years and 70 % male in nine rehabilitation facilities in Scandinavia, were fitted to the Rasch model. A detailed analysis of scoring functions of the seven categories of the FIM™ motor items was made prior to testing fit to the model. Categories were re-scored where necessary. Fit to the model was assessed initially within diagnosis and then in the pooled data. Analysis of Differential Item Functioning (DIF) was undertaken in the pooled data for the FIM™ motor scale. Comparability of sum scores between diagnoses was tested by Test Equating. RESULTS: The present seven category scoring system for the FIM™ motor items was found to be invalid, necessitating extensive rescoring. Despite rescoring, the item-trait interaction fit statistic was significant and two individual items showed misfit to the model, Eating and Bladder management. DIF was also found for Spinal Cord Injury, compared with the other two diagnoses. After adjustment, it was possible to make appropriate comparisons of sum scores between the three diagnoses. CONCLUSION: The seven-category response function is a problem for the FIM™ instrument, and a reduction of responses might increase the validity of the instrument. Likewise, the removal of items that do not fit the underlying trait would improve the validity of the scale in these groups. Cross-diagnostic DIF is also a problem but for clinical use sum scores on group data in a generic instrument such as the FIM™ can be compared with appropriate adjustments. Thus, when planning interventions (group or individual), developing rehabilitation programs or comparing patient achievements in individual items, cross-diagnostic DIF must be taken into account

    Health status in non-dystrophic myotonias: close relation with pain and fatigue

    Get PDF
    To determine self-reported health status in non-dystrophic myotonias (NDM) and its relationship to painful myotonia and fatigue. In a cross-sectional study, 32 NDM patients with chloride and 30 with sodium channelopathies, all off treatment, completed a standardised interview, the fatigue assessment scale (FAS), and the 36-item Short-Form Health Survey (SF-36). Beside formal assessment of pain, assessment of painful or painless myotonia was determined. The domain scores of the SF-36 were compared with Dutch community scores. Apart from the relationship among SF-36 scores and (1) painful myotonia and (2) fatigue, regression analyses in both NDM groups were conducted to determine the strongest determinants of the SF-36 domains general health perception, physical component (PCS) and mental component summary (MCS). All physically oriented SF-36 domains in both NDM groups (P ≤ 0.01) and social functioning in the patients with sodium channelopathies (P = 0.048) were substantially lower relative to the Dutch community scores. The patients with painful myotonia (41.9%) scored substantially (P < 0.05) lower on most SF-36 domains than the patients without painful myotonia (58.1%). Fatigued patients (53.2%) scored substantially lower (P ≤ 0.01) on all SF-36 domains than their non-fatigued counterparts (46.8%). The regression analysis showed that fatigue was the strongest predictor for the general-health perception and painful myotonia for the physical-component summary. None of the patients showed below-norm scores on the domain mental-component summary. The impact of NDM on the physical domains of patients’ health status is substantial, and particularly painful myotonia and fatigue tend to impede their physical functioning

    The reliability of side to side measurements of upper extremity activity levels in healthy subjects

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In both clinical and occupational settings, ambulatory sensors are becoming common for assessing all day measurements of arm motion. In order for the motion of a healthy, contralateral side to be used as a control for the involved side, the inherent side to side differences in arm usage must be minimal. The goal of the present study was to determine the reliability of side to side measurements of upper extremity activity levels in healthy subjects.</p> <p>Methods</p> <p>Thirty two subjects with no upper extremity pathologies were studied. Each subject wore a triaxial accelerometer on both arms for three and a half hours. Motion was assessed using parameters previously reported in the literature. Side to side differences were compared with the intraclass correlation coefficient, standard error of the mean, minimal detectable change scores and a projected sample size analysis.</p> <p>Results</p> <p>The variables were ranked based on their percentage of minimal detectable change scores and sample sizes needed for paired t-tests. The order of these rankings was found to be identical and the top ranked parameters were activity counts per hour (MDC% = 9.5, n = 5), jerk time (MDC% = 15.8, n = 8) and percent time above 30 degrees (MDC% = 34.7, n = 9).</p> <p>Conclusions</p> <p>In general, the mean activity levels during daily activities were very similar between dominant and non-dominant arms. Specifically, activity counts per hour, jerk time, and percent time above 30 degrees were found to be the variables most likely to reveal significant difference or changes in both individuals and groups of subjects. The use of ambulatory measurements of upper extremity activity has very broad uses for occupational assessments, musculoskeletal injuries of the shoulder, elbow, wrist and hand as well as neurological pathologies.</p

    Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BackgroundDisorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021.MethodsWe estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined.FindingsGlobally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer.InterpretationAs the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed

    Erratum

    No full text

    More outcomes than trials: a call for consistent data collection across stroke rehabilitation trials

    No full text
    Stroke survivors experience complex combinations of impairments, activity limitations, and participation restrictions. The essential components of stroke rehabilitation remain elusive. Determining efficacy in randomized controlled trials (RCTs) is challenging; there is no commonly agreed primary outcome measure for rehabilitation trials. Clinical guidelines depend on proof of efficacy in RCTs and meta-analyses. However, diverse trial aims, differing methods, inconsistent data collection, and use of multiple assessment tools hinder comparability across trials. Consistent data collection in acute stroke trials has facilitated meta-analyses to inform trial design and clinical practice. With few exceptions, inconsistent data collection has hindered similar progress in stroke rehabilitation research. There is an urgent need for the routine collection of a core dataset of common variables in rehabilitation trials. The European Stroke Organisation Outcomes Working Group, the National Institutes of Neurological Disorders and Stroke Common Data Elements project, and the Collaborative Stroke Audit and Research project have called for consistency in data collection in stroke trials. Standardizing data collection can decrease study start up times, facilitate data sharing, and inform clinical guidelines. Although achieving consensus on which outcome measures to use in stroke rehabilitation trials is a considerable task, perhaps a feasible starting point is to achieve consistency in the collection of data on demography, stroke severity, and stroke onset to inclusion times. Longer term goals could include the development of a consensus process to establish the core dataset. This should be endorsed by researchers, funders, and journal editors in order to facilitate sustainable change.
    corecore