41 research outputs found

    Antibodies to MOG and AQP4 in children with neuromyelitis optica and limited forms of the disease

    Get PDF
    Objective To determine the frequency and clinical-radiological associations of antibodies to myelin oligodendrocyte glycoprotein (MOG) and aquaporin-4 (AQP4) in children presenting with neuromyelitis optica (NMO) and limited forms. Methods Children with a first event of NMO, recurrent (RON), bilateral ON (BON), longitudinally extensive transverse myelitis (LETM) or brainstem syndrome (BS) with a clinical follow-up of more than 12 months were enrolled. Serum samples were tested for MOG-and AQP4-antibodies using live cell-based assays. Results 45 children with NMO (n=12), LETM (n=14), BON (n=6), RON (n=12) and BS (n=1) were included. 25/45 (56%) children had MOG-antibodies at initial presentation (7 NMO, 4 BON, 8 ON, 6 LETM). 5/45 (11%) children showed AQP4-antibodies (3 NMO, 1 LETM, 1 BS) and 15/45 (33%) were seronegative for both antibodies (2 NMO, 2 BON, 4 RON, 7 LETM). No differences were found in the age at presentation, sex ratio, frequency of oligoclonal bands or median EDSS at last follow-up between the three groups. Children with MOG-antibodies more frequently (1) had a monophasic course (p=0.018) after one year, (2) presented with simultaneous ON and LETM (p=0.004) and (3) were less likely to receive immunosuppressive therapies (p=0.0002). MRI in MOG-antibody positive patients (4) less frequently demonstrated periependymal lesions (p=0.001), (5) more often were unspecific (p=0.004) and (6) resolved more frequently (p=0.016). Conclusions 67% of all children presenting with NMO or limited forms tested positive for MOG-or AQP4-antibodies. MOG-antibody positivity was associated with distinct features. We therefore recommend to measure both antibodies in children with demyelinating syndromes

    De novo DHDDS variants cause a neurodevelopmental and neurodegenerative disorder with myoclonus

    Get PDF
    Subcellular membrane systems are highly enriched in dolichol, whose role in organelle homeostasis and endosomal-lysosomal pathway remains largely unclear besides being involved in protein glycosylation. DHDDS encodes for the catalytic subunit (DHDDS) of the enzyme cis-prenyltransferase (cis-PTase), involved in dolichol biosynthesis and dolichol-dependent protein glycosylation in the endoplasmic reticulum. An autosomal recessive form of retinitis pigmentosa (retinitis pigmentosa 59) has been associated with a recurrent DHDDS variant. Moreover, two recurring de novo substitutions were detected in a few cases presenting with neurodevelopmental disorder, epilepsy, and movement disorder. We evaluated a large cohort of patients (n=25) with de novo pathogenic variants in DHDDS and provided the first systematic description of the clinical features and long-term outcome of this new neurodevelopmental and neurodegenerative disorder. The functional impact of the identified variants was explored by yeast complementation system and enzymatic assay. Patients presented during infancy or childhood with a variable association of neurodevelopmental disorder, generalized epilepsy, action myoclonus/cortical tremor, and ataxia. Later in the disease course they experienced a slow neurological decline with the emergence of hyperkinetic and/or hypokinetic movement disorder, cognitive deterioration, and psychiatric disturbances. Storage of lipidic material and altered lysosomes were detected in myelinated fibers and fibroblasts, suggesting a dysfunction of the lysosomal enzymatic scavenger machinery. Serum glycoprotein hypoglycosylation was not detected and, in contrast to retinitis pigmentosa and other congenital disorders of glycosylation involving dolichol metabolism, the urinary dolichol D18/D19 ratio was normal. Mapping the disease-causing variants into the protein structure revealed that most of them clustered around the active site of the DHDDS subunit. Functional studies using yeast complementation assay and in vitro activity measurements confirmed that these changes affected the catalytic activity of the cis-PTase and showed growth defect in yeast complementation system as compared with the wild-type enzyme and retinitis pigmentosa-associated protein. In conclusion, we characterized a distinctive neurodegenerative disorder due to de novo DHDDS variants, which clinically belongs to the spectrum of genetic progressive encephalopathies with myoclonus. Clinical and biochemical data from this cohort depicted a condition at the intersection of congenital disorders of glycosylation and inherited storage diseases with several features akin to of progressive myoclonus epilepsy such as neuronal ceroid lipofuscinosis and other lysosomal disorders

    The ARID1B spectrum in 143 patients: from nonsyndromic intellectual disability to Coffin–Siris syndrome

    Get PDF
    Purpose: Pathogenic variants in ARID1B are one of the most frequent causes of intellectual disability (ID) as determined by large-scale exome sequencing studies. Most studies published thus far describe clinically diagnosed Coffin–Siris patients (ARID1B-CSS) and it is unclear whether these data are representative for patients identified through sequencing of unbiased ID cohorts (ARID1B-ID). We therefore sought to determine genotypic and phenotypic differences between ARID1B-ID and ARID1B-CSS. In parallel, we investigated the effect of different methods of phenotype reporting. Methods: Clinicians entered clinical data in an extensive web-based survey. Results: 79 ARID1B-CSS and 64 ARID1B-ID patients were included. CSS-associated dysmorphic features, such as thick eyebrows, long eyelashes, thick alae nasi, long and/or broad philtrum, small nails and small or absent fifth distal phalanx and hypertrichosis, were observed significantly more often (p < 0.001) in ARID1B-CSS patients. No other significant differences were identified. Conclusion: There are only minor differences between ARID1B-ID and ARID1B-CSS patients. ARID1B-related disorders seem to consist of a spectrum, and patients should be managed similarly. We demonstrated that data collection methods without an explicit option to report the absence of a feature (such as most Human Phenotype Ontology-based methods) tended to underestimate gene-related features

    Severe TUBB4A-related hypomyelination with atrophy of the basal ganglia and cerebellum: Novel neuropathological findings

    No full text
    Hypomyelination with atrophy of the basal ganglia and cerebellum (H-ABC) is a rare hypomyelinating leukodystrophy characterized by infantile or childhood onset of motor developmental delay, progressive rigidity and spasticity, with hypomyelination and progressive atrophy of the basal ganglia and cerebellum due to a genetic mutation of the TUBB4A gene. It has only been recognized since 2002 and the full spectrum of the disorder is still being delineated. Here, we review a case report of a severely affected girl with a thorough neuropathological evaluation demonstrating novel clinical and pathological findings. Clinically, our patient demonstrated visual dysfunction and hypodontia in addition to the typical phenotype. Morphologically, more severe and widespread changes in the white matter were observed, including to the optic tracts; in gray structures such as the caudate nucleus, thalamus, globus pallidus, and substantia nigra; as well as an area of focal cortical dysplasia. Overall this case offers further insight into the broad range of clinical and neuropathological findings that may be associated with H-ABC and related TUBB4A gene mutations

    Generation of the human iPSC lines AKOSi011-A carrying the mutation p.Pro65Ser/p.Asp35T and AKOSi012-A, carrying the mutation p.Tyr231His, derived from FAHN patient fibroblasts

    No full text
    Fatty acid hydroxylase-associated neurodegeneration (FAHN) is a hereditary neurodegenerative disease caused by mutations in the FA2H gene. Patients show a wide range of neurological symptoms and an abnormal myelination. Here we describe the generation of the human induced pluripotent stem cell (hiPSC) lines AKOSi011-A and AKOSi012-A, derived from FAHN-patient fibroblasts, carrying the compound heterozygous mutation p.Pro65Ser/p.Asp35Tyr and the homozygous mutation p.Tyr231His, respectively. The hiPSC lines were generated using a non-integrating Sendai virus. The obtained hiPSCs show an unobtrusive karyotype, carry the mutations of the original fibroblasts, express pluripotency markers and can differentiate into cells of the three germ layers
    corecore