4 research outputs found

    Nanoparticles of oxidized-cellulose synthesized by green method

    No full text
    Site specific drug delivery is the foremost requisite for chemotherapy to avoid the associated side effects. For this, stimuli-responsiveness of the drug delivery device is of great interest to selectively release the loaded drug to the tumor cells. Herein, the oxidized cellulose nanoparticles (OCNPs) were synthesized by oxidation of cellulose with 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO) and sodium periodate followed by sonication. Doxorubicin (Dox), as model anticancer drug, was loaded on the synthesized OCNPs via pH-responsive linkages between functional groups of Dox and OCNPs. Its release behaviour was studied in medium of different pH values. Dox release was maximum at pH 5.0 and pH 6.8 i.e., endosomal and extracellular pH, respectively in tumor tissue, and minimum at physiological pH 7.4 of normal tissues. Various mathematical models were applied to elucidate the release mechanism of the Dox from the loaded OCNPs. Dox release followed non-Fickian diffusion mechanism. The results suggest that these pH-responsive OCNPs are effective and promising Dox-delivery carriers for cancer treatment and capable of reducing side-effects of this anticancer drug to the normal cells. Keywords: Green synthesis, Oxidized-cellulose nanoparticles, Site specific drug delivery, Non-Fickian diffusio

    Functionalized <i>Moringa oleifera</i> Gum as pH-Responsive Nanogel for Doxorubicin Delivery: Synthesis, Kinetic Modelling and In Vitro Cytotoxicity Study

    No full text
    Environment-responsive-cum-site-specific delivery of therapeutic drugs into tumor cells is a foremost challenge for chemotherapy. In the present work, Moringa oleifera gum–based pH-responsive nanogel (MOGN) was functionalized as a doxorubicin (DOX) carrier. It was synthesized via free radical polymerization through the γ-irradiation method using acrylamide and N,N’-MBA followed by hydrolysis, sonication, and ultracentrifugation. The swelling behavior of MOGN as a function of pH was assessed using a gravimetric method that revealed its superabsorbent nature (365.0 g/g). Furthermore, MOGN showed a very high loading efficiency (98.35 %L) of DOX by MOGN. In vitro release studies revealed that DOX release from DOX-loaded MOGN was 91.92% at pH 5.5 and 12.18% at 7.4 pH, thus favorable to the tumor environment. The drug release from nanogel followed Korsmeyer–Peppas model at pH 5.5 and 6.8 and the Higuchi model at pH 7.4. Later, the efficient DOX release at the tumor site was also investigated by cytotoxicity study using Rhabdomyosarcoma cells. Thus, the synthesized nanogel having high drug loading capacity and excellent pH-triggered disintegration and DOX release performance in a simulated tumor environment could be a promising candidate drug delivery system for the targeted and controlled release of anticancer drugs
    corecore