2,565 research outputs found

    Phonon Dispersion and Electrical Resistivity of Potassium

    Get PDF

    Ultrafast photoinduced enhancement of nonlinear optical response in 15-atom gold clusters on indium tin oxide conducting film

    Full text link
    We show that the third order optical nonlinearity of 15-atom gold clusters is significantly enhanced when in contact with indium tin oxide (ITO) conducting film. Open and close aperture z-scan experiments together with non-degenerate pump-probe differential transmission experiments were done using 80 fs laser pulses centered at 395 nm and 790 nm on gold clusters encased inside cyclodextrin cavities. We show that two photon absorption coefficient is enhanced by an order of magnitude as compared to that when the clusters are on pristine glass plate. The enhancement for the nonlinear optical refraction coefficient is ~3 times. The photo-induced excited state absorption using pump-probe experiments at pump wavelength of 395 nm and probe at 790 nm also show an enhancement by an order of magnitude. These results attributed to the excited state energy transfer in the coupled gold cluster-ITO system are different from the enhancement seen so far in charge donor-acceptor complexes and nanoparticle-conjugate polymer composites.Comment: To appear in Optics Express (2013); http://dx.doi.org/10.1364/OE.21.00848

    Femtosecond Photoexcited Carrier Dynamics in Reduced Graphene Oxide Suspensions and Films

    Get PDF
    We report ultrafast response of femtosecond photoexcited carriers in single layer reduced graphene oxide flakes suspended in water as well as few layer thick film deposited on indium tin oxide coated glass plate using pump-probe differential transmission spectroscopy at 790 nm. The carrier relaxation dynamics has three components: ~200 fs, 1 to 2 ps, and ~25 ps, all of them independent of pump fluence. It is seen that the second component (1 to 2 ps) assigned to the lifetime of hot optical phonons is larger for graphene in suspensions whereas other two time constants are the same for both the suspension and the film. The value of third order nonlinear susceptibility estimated from the pump-probe experiments is compared with that obtained from the open aperture Z-scan results for the suspension.Comment: 4 pages, 4 figures, to appear in International Journal of Nanoscience (IJN), 201

    Anomalously Slow Domain Growth in Fluid Membranes with Asymmetric Transbilayer Lipid Distribution

    Full text link
    The effect of asymmetry in the transbilayer lipid distribution on the dynamics of phase separation in fluid vesicles is investigated numerically for the first time. This asymmetry is shown to set a spontaneous curvature for the domains that alter the morphology and dynamics considerably. For moderate tension, the domains are capped and the spontaneous curvature leads to anomalously slow dynamics, as compared to the case of symmetric bilayers. In contrast, in the limiting cases of high and low tensions, the dynamics proceeds towards full phase separation.Comment: 4 pages, 5 figure

    Studies on the growth of the marine microalga Dunaliella salina (Teodoresco)

    Get PDF
    The present paper reports on the growth pattern of Dunaliella salina cells cultured in different salinities and also in stressed conditions on exposure to mutagens (UV and PEG). The cultures were maintained in different salinities viz., 20, 25, 30, 35, 40, 45 and 50 ppt for a period of two weeks in triplicates and the growth rate was monitored. The peak growth (14.29 lakhs) was observed in 35 ppt on eleventh day indicating the ideal salinity for the culture of this species. The cultures in mid-exponential growth phase were exposed to UV light for 30 and 60 minutes and PEG at four doses viz. 0.125, 0.25, 0.5 and 1 gm/ml. Poorest cell growth was observed for half an hour UV treated cultures (3.51 lakhs/ml). A proportionate decrease in cell count was noticed with increase in the concentration of PEG

    A New Adjustment of Laplace Transform for Fractional Bloch Equation in NMR Flow

    Get PDF
    This work purpose suggest a new analytical technique called the fractional homotopy analysis transform method (FHATM) for solving time fractional Bloch NMR (nuclear magnetic resonance) flow equations, which are a set of macroscopic equations that are used for modeling nuclear magnetization as a function of time. The true beauty of this article is the coupling of the homotopy analysis method and the Laplace transform method for systems of fractional differential equations. The solutions obtained by the proposed method indicate that the approach is easy to implement and computationally very attractive

    Acoustic and optical phonon dynamics from femtosecond time-resolved optical spectroscopy of superconducting iron pnictide Ca(Fe_0.944Co_0.056)_2As_2

    Full text link
    We report temperature evolution of coherently excited acoustic and optical phonon dynamics in superconducting iron pnictide single crystal Ca(Fe_0.944Co_0.056)_2As_2 across the spin density wave transition at T_SDW ~ 85 K and superconducting transition at T_SC ~20 K. Strain pulse propagation model applied to the generation of the acoustic phonons yields the temperature dependence of the optical constants, and longitudinal and transverse sound velocities in the temperature range of 3.1 K to 300 K. The frequency and dephasing times of the phonons show anomalous temperature dependence below T_SC indicating a coupling of these low energy excitations with the Cooper-pair quasiparticles. A maximum in the amplitude of the acoustic modes at T ~ 170 is seen, attributed to spin fluctuations and strong spin-lattice coupling before T_SDW.Comment: 6 pages, 4 figures (revised manuscript

    Ultrafast quasiparticle dynamics in superconducting iron pnictide CaFe1.89Co0.11As2

    Full text link
    Nonequilibrium quasiparticle relaxation dynamics is reported in superconducting CaFe1.89Co0.11As2 single crystal using femtosecond time-resolved pump-probe spectroscopy. The carrier dynamics reflects a three-channel decay of laser deposited energy with characteristic time scales varying from few hundreds of femtoseconds to order of few nanoseconds where the amplitudes and time-constants of the individual electronic relaxation components show significant changes in the vicinity of the spin density wave (T_SDW ~ 85 K) and superconducting (T_SC ~ 20 K) phase transition temperatures. The quasiparticles dynamics in the superconducting state reveals a charge gap with reduced gap value of 2Δ\Delta_0/k_BT_SC ~ 1.8. We have determined the electron-phonon coupling constant \lemda to be ~ 0.14 from the temperature dependent relaxation time in the normal state, a value close to those reported for other types of pnictides. From the peculiar temperature-dependence of the carrier dynamics in the intermediate temperature region between the superconducting and spin density wave phase transitions, we infer a temperature scale where the charge gap associated with the spin ordered phase is maximum and closes on either side while approaching the two phase transition temperatures.Comment: 6 pages, 4 figures (revised manuscript); http://dx.doi.org/10.1016/j.ssc.2013.02.00
    corecore