7 research outputs found

    The Marker State Space (MSS) Method for Classifying Clinical Samples

    Get PDF
    The development of accurate clinical biomarkers has been challenging in part due to the diversity between patients and diseases. One approach to account for the diversity is to use multiple markers to classify patients, based on the concept that each individual marker contributes information from its respective subclass of patients. Here we present a new strategy for developing biomarker panels that accounts for completely distinct patient subclasses. Marker State Space (MSS) defines "marker states" based on all possible patterns of high and low values among a panel of markers. Each marker state is defined as either a case state or a control state, and a sample is classified as case or control based on the state it occupies. MSS was used to define multi-marker panels that were robust in cross validation and training-set/test-set analyses and that yielded similar classification accuracy to several other classification algorithms. A three-marker panel for discriminating pancreatic cancer patients from control subjects revealed subclasses of patients based on distinct marker states. MSS provides a straightforward approach for modeling highly divergent subclasses of patients, which may be adaptable for diverse applications. © 2013 Fallon et al

    Bioinformatics services for analyzing massive genomic datasets

    Get PDF
    The explosive growth of next-generation sequencing data has resulted in ultra-large-scale datasets and ensuing computational problems. In Korea, the amount of genomic data has been increasing rapidly in the recent years. Leveraging these big data requires researchers to use large-scale computational resources and analysis pipelines. A promising solution for addressing this computational challenge is cloud computing, where CPUs, memory, storage, and programs are accessible in the form of virtual machines. Here, we present a cloud computing-based system, Bio-Express, that provides user-friendly, cost-effective analysis of massive genomic datasets. Bio-Express is loaded with predefined multi-omics data analysis pipelines, which are divided into genome, transcriptome, epigenome, and metagenome pipelines. Users can employ predefined pipelines or create a new pipeline for analyzing their own omics data. We also developed several web-based services for facilitating down-stream analysis of genome data. Bio-Express web service is freely available at https://www. bioexpress.re.kr/. ?? 2020, Korea Genome Organization

    A Rail-Temperature-Prediction Model Based on Machine Learning: Warning of Train-Speed Restrictions Using Weather Forecasting

    No full text
    Predicting the rail temperature of a railway system is important for establishing a rail management plan against railway derailment caused by orbital buckling. The rail temperature, which is directly responsible for track buckling, is closely related to air temperature, which continuously increases due to global warming effects. Moreover, railway systems are increasingly installed with continuous welded rails (CWRs) to reduce train vibration and noise. Unfortunately, CWRs are prone to buckling. This study develops a reliable and highly accurate novel model that can predict rail temperature using a machine learning method. To predict rail temperature over the entire network with high-prediction performance, the weather effect and solar effect features are used. These features originate from the analysis of the thermal environment around the rail. Precisely, the presented model has a higher performance for predicting high rail temperature than other models. As a convenient structural health-monitoring application, the train-speed-limit alarm-map (TSLAM) was also proposed, which visually maps the predicted rail-temperature deviations over the entire network for railway safety officers. Combined with TSLAM, our rail-temperature prediction model is expected to improve track safety and train timeliness

    One-Step Laser Encapsulation of Nano-Cracking Strain Sensors

    No full text
    Development of flexible strain sensors that can be attached directly onto the skin, such as skin-mountable or wearable electronic devices, has recently attracted attention. However, such flexible sensors are generally exposed to various harsh environments, such as sweat, humidity, or dust, which cause noise and shorten the sensor lifetimes. This study reports the development of a nano-crack-based flexible sensor with mechanically, thermally, and chemically stable electrical characteristics in external environments using a novel one-step laser encapsulation (OLE) method optimized for thin films. The OLE process allows simultaneous patterning, cutting, and encapsulating of a device using laser cutting and thermoplastic polymers. The processes are simplified for economical and rapid production (one sensor in 8 s). Unlike other encapsulation methods, OLE does not degrade the performance of the sensor because the sensing layers remain unaffected. Sensors protected with OLE exhibit mechanical, thermal, and chemical stability under water-, heat-, dust-, and detergent-exposed conditions. Finally, a waterproof, flexible strain sensor is developed to detect motions around the eye, where oil and sweat are generated. OLE-based sensors can be used in several applications that are exposed to a large amount of foreign matter, such as humid or sweaty environments
    corecore